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Goals Numerics Results Conclusions

Goals

Detailed study of the cascade process of two linked quantum
vortex loops (2→ 1-folded→ 2→ 3) under the Gross-Pitaevskii
equation (GPE),

∂ψ

∂t
=

i
2
∇2ψ +

i
2
(
1− |ψ|2

)
ψ, |ψ| → 1 as |x | → ∞ .

Accurate numerical calculation of geometric and topological
properties (Wr , Tw , Lk , SL, N, T ).

Investigation of possible helicity conservation throughout the
whole process

H =
∑
i 6=j

Γi ΓjLkij +
∑

i

Γ2
i (Wri + Twi ), Γi = 2π.
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Numerics

2nd-order Strang splitting (time), Fourier (space), see Koplik &
Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be
periodic, computational domain doubled in each direction,
“mirror” vortex rings.

The method conserves mass exactly, previously used for
simulating vortex reconnection (see Zuccher et al. Phys. Fluids
24, 2012 and Zuccher & Ricca Phys. Rev. E 92, 2015).

Each vortex tube contributes to the initial condition with
ψ =

√
ρ4eiθ, where ρ4(r) = a1r2+a2r4+a3r6+a4r8

1+b1r2+b2r4+b3r6+a4r8 (see Caliari &
Zuccher arXiv preprint arXiv:1603.05022, 2016).

∆x = ∆y = ∆z = ξ/3, 1503 points, ∆t = 1/80 = 0.0125.
Local higher resolution (ξ/10) during the post-processing by
employing Nonuniform Fast Fourier Transform (see Caliari &
Zuccher Fast evaluation of 3d Fourier series in MATLAB with an
application to quantum vortex reconnections, 2016, in
preparation).
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Centerlines and ribbons, t = 23
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Density ρ = |ψ|2, isosurface Back
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Phase θ = ∠ψ, scalar cut plane Back
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Phase θ = ∠ψ, isosurface Back
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Vortex centerlines and ribbon edges (black) Next
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Geometric quantities
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Self-linking number
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Writhing number
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Twist
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Total twist
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Intrinsic twist
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Total torsion
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Inflection points
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The singularity of torsion at inflection points is integrable, see
Moffatt & Ricca Proc. R. Soc. Lond. A 439, 1992.
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Conclusions

Linked vortex rings evolve towards unlinked vortex
loops. As t →∞, Lkij = 0, so:

H =
∑

i

Γ2
i (Wri + Twi) .

Accurate numerical calculation of all geometric and
topological quantities shows that Wr and Tw compensate
one another.
GPE is Hamiltonian and by the Madelung transformation
results in compressible Navier-Stokes equations with
quantum pressure and quantum stress. GPE seems to
conserve helicity while allowing vortex reconnection.
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