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@ Detailed study of the cascade process of two linked quantum
vortex loops (2 — 1-folded — 2 — 3) under the Gross-PitaevskKii
equation (GPE),

W _ige, 1 2
=5V s (1= WP v, ¥ 1asix|— oo



Goals

Goals

@ Detailed study of the cascade process of two linked quantum
vortex loops (2 — 1-folded — 2 — 3) under the Gross-PitaevskKii
equation (GPE),

W _ige, 1 2
=5V s (1= WP v, ¥ 1asix|— oo

@ Accurate numerical calculation of geometric and topological
properties (Wr, Tw, Lk, SL, N, T).
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@ Accurate numerical calculation of geometric and topological
properties (Wr, Tw, Lk, SL, N, T).

@ Investigation of possible helicity conservation throughout the
whole process

H= ZF,F,-LK,-,+ZF?(Wr,-+ TW,‘), I = 2.
i i
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@ 2nd-order Strang splitting (time), Fourier (space), see Koplik &
Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be
periodic, computational domain doubled in each direction,
“mirror” vortex rings.
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@ 2nd-order Strang splitting (time), Fourier (space), see Koplik &
Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be
periodic, computational domain doubled in each direction,
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simulating vortex reconnection (see Zuccher et al. Phys. Fluids
24, 2012 and Zuccher & Ricca Phys. Rev. E 92, 2015).

@ Each vortex tube contributes to theAinitigI cgndition with
¥ = \/pae’, where p4(r) = 1i‘b’1 rﬁirﬁirﬁirs (see Caliari &
Zuccher arXiv preprint arXiv:1603.05022, 2016).

@ Ax=Ay=Az=¢/3,150° points, At = 1/80 = 0.0125.
Local higher resolution (£/10) during the post-processing by
employing Nonuniform Fast Fourier Transform (see Caliari &
Zuccher Fast evaluation of 3d Fourier series in MATLAB with an
application to quantum vortex reconnections, 2016, in
preparation).
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Phase 0 = /1), scalar cut plane
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Results

Vortex centerlines and ribbon edges (black)

t= 0.00




Geometric quantities

SL=Wr+Tw
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Self-linking number
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Intrinsic twist
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Inflection points
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The singularity of torsion at inflection points is integrable, see
Moffatt & Ricca Proc. R. Soc. Lond. A 439, 1992.
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Conclusions

@ Linked vortex rings evolve towards unlinked vortex
loops. As t — oo, Lkj = 0, so:

H=> T2(Wr+ Tw).
i

@ Accurate numerical calculation of all geometric and
topological quantities shows that Wr and Tw compensate
one another.

@ GPE is Hamiltonian and by the Madelung transformation
results in compressible Navier-Stokes equations with
quantum pressure and quantum stress. GPE seems to
conserve helicity while allowing vortex reconnection.
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