Cascade process of linked quantum vortex loops

Simone Zuccher ${ }^{1}$ and Renzo L. Ricca ${ }^{2}$

${ }^{1}$ University of Verona, Italy, simone. zuccher@univr.it
${ }^{2}$ University of Milano-Bicocca, Italy, renzo.ricca@unimib.it

April 13th, 2016
Helicity Structures and Singularity in Fluid and Plasma Dynamics 11 April -15 April, 2016, Venice, Italy

Goals

- Detailed study of the cascade process of two linked quantum vortex loops $(2 \rightarrow 1$-folded $\rightarrow 2 \rightarrow 3)$ under the Gross-Pitaevskii equation (GPE),

$$
\frac{\partial \psi}{\partial t}=\frac{\mathrm{i}}{2} \nabla^{2} \psi+\frac{\mathrm{i}}{2}\left(1-|\psi|^{2}\right) \psi, \quad|\psi| \rightarrow 1 \text { as }|x| \rightarrow \infty
$$

- Accurate numerical callculation of geometric and topological properties ($W r, T w, L k, S L, N, T)$.
- Investigation of possible helicity conservation throughout the whole process

$$
H=\sum_{i \neq j} \Gamma_{i} \Gamma_{j} L k_{i j}+\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T W_{i}\right), \quad \Gamma_{i}=2 \pi .
$$

Goals

- Detailed study of the cascade process of two linked quantum vortex loops ($2 \rightarrow 1$-folded $\rightarrow 2 \rightarrow 3$) under the Gross-Pitaevskii equation (GPE),

$$
\frac{\partial \psi}{\partial t}=\frac{\mathrm{i}}{2} \nabla^{2} \psi+\frac{\mathrm{i}}{2}\left(1-|\psi|^{2}\right) \psi, \quad|\psi| \rightarrow 1 \text { as }|x| \rightarrow \infty .
$$

- Accurate numerical calculation of geometric and topological properties (Wr, Tw, Lk, SL, N, T).
- Investigation of possible helicity conservation throughout the whole process

Goals

- Detailed study of the cascade process of two linked quantum vortex loops $(2 \rightarrow 1$-folded $\rightarrow 2 \rightarrow 3$) under the Gross-Pitaevskii equation (GPE),

$$
\frac{\partial \psi}{\partial t}=\frac{\mathrm{i}}{2} \nabla^{2} \psi+\frac{\mathrm{i}}{2}\left(1-|\psi|^{2}\right) \psi, \quad|\psi| \rightarrow 1 \text { as }|x| \rightarrow \infty .
$$

- Accurate numerical calculation of geometric and topological properties (Wr, Tw, Lk, SL, N, T).
- Investigation of possible helicity conservation throughout the whole process

Goals

- Detailed study of the cascade process of two linked quantum vortex loops $(2 \rightarrow 1$-folded $\rightarrow 2 \rightarrow 3)$ under the Gross-Pitaevskii equation (GPE),

$$
\frac{\partial \psi}{\partial t}=\frac{\mathrm{i}}{2} \nabla^{2} \psi+\frac{\mathrm{i}}{2}\left(1-|\psi|^{2}\right) \psi, \quad|\psi| \rightarrow 1 \text { as }|x| \rightarrow \infty
$$

- Accurate numerical calculation of geometric and topological properties (Wr, Tw, Lk, SL, N, T).
- Investigation of possible helicity conservation throughout the whole process

$$
H=\sum_{i \neq j} \Gamma_{i} \Gamma_{j} L k_{i j}+\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T w_{i}\right), \quad \Gamma_{i}=2 \pi .
$$

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015).
- Each vortex tube contributes to the initial condition with $\psi=\sqrt{\rho_{4}} \mathrm{e}^{\mathrm{i} \theta}$, where $\rho_{4}(r)=\frac{a_{1} r^{2}+a_{2} r^{4}+a_{3} r^{6}+a_{4} r^{8}}{1+b_{1} r^{2}+b_{2} r^{4}+b_{3} r^{6}+a_{4} r^{8}}$ (see Caliari \& Zuccher arXiv preprint arXiv:1603.05022, 2016).
- $\wedge x=\wedge y=\wedge z=\xi / 3,150^{3}$ points, $\wedge t=1 / 80=0.0125$. Local higher resolution $(\xi / 10)$ during the post-processing by employing Nonuniform Fast Fourier Transform (see Caliari \& Zuccher Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections, 2016, in preparation).

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015)
- Each vortex tube contributes to the initial condition with $\psi=\sqrt{\rho_{4}} \mathrm{e}^{\mathrm{i} \theta}$, where $\rho_{4}(r)=\frac{a_{1} r^{2}+a_{2} r^{4}+a_{3} r^{6}+a_{4} r^{8}}{1+b_{1} r^{2}+b_{2} r^{4}+b_{3} r^{6}+a_{4} r^{8}}$ (see Caliari \& Zuccher arXiv preprint arXiv:1603.05022, 2016)
- $\Delta x=\Delta y=\Delta z=\xi / 3,150^{3}$ points, $\Delta t=1 / 80=0.0125$. Local higher resolution $(\xi / 10)$ during the post-processing by employing Nonuniform Fast Fourier Transform (see Caliari \& Zuccher Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections, 2016, in
preparation)

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015).
- Each vortex tube contributes to the initial condition with

Zuccher arXiv preprint arXiv:1603.05022, 2016)

Local higher resolution $(\xi / 10)$ during the post-processing by employing Nonuniform Fast Fourier Transform (see Caliari \& Zuccher Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections, 2016, in preparation)

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015).
- Each vortex tube contributes to the initial condition with $\psi=\sqrt{\rho_{4}} \mathrm{e}^{\mathrm{i} \theta}$, where $\rho_{4}(r)=\frac{a_{1} r^{2}+a_{2} r^{4}+a_{3}{ }^{6}+a_{4} r^{8}}{1+b_{1} r^{2}+b_{2} r^{4}+b_{3} r^{6}+a_{4} r^{8}}$ (see Caliari \& Zuccher arXiv preprint arXiv:1603.05022, 2016).

application to quantum vortex reconnections, 2016, in
preparation)

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015).
- Each vortex tube contributes to the initial condition with $\psi=\sqrt{\rho_{4}} \mathrm{e}^{\mathrm{i} \theta}$, where $\rho_{4}(r)=\frac{a_{1} r^{2}+a_{2} r^{4}+a_{3}{ }^{6}+a_{4} r^{8}}{1+b_{1} r^{2}+b_{2} r^{4}+b_{3} r^{6}+a_{4} r^{8}}$ (see Caliari \& Zuccher arXiv preprint arXiv:1603.05022, 2016).
- $\Delta x=\Delta y=\Delta z=\xi / 3,150^{3}$ points, $\Delta t=1 / 80=0.0125$.

Numerics

- 2nd-order Strang splitting (time), Fourier (space), see Koplik \& Levine Phys. Rev. Lett. 71, 1993. Boundary conditions must be periodic, computational domain doubled in each direction, "mirror" vortex rings.
- The method conserves mass exactly, previously used for simulating vortex reconnection (see Zuccher et al. Phys. Fluids 24, 2012 and Zuccher \& Ricca Phys. Rev. E 92, 2015).
- Each vortex tube contributes to the initial condition with $\psi=\sqrt{\rho_{4}} \mathrm{e}^{\mathrm{i} \theta}$, where $\rho_{4}(r)=\frac{a_{1} r^{2}+a_{2} r^{4}+a_{3} r^{6}+a_{4} r^{8}}{1+b_{1} r^{2}+b_{2} r^{4}+b_{3} r^{6}+a_{4} r^{8}}$ (see Caliari \& Zuccher arXiv preprint arXiv:1603.05022, 2016).
- $\Delta x=\Delta y=\Delta z=\xi / 3,150^{3}$ points, $\Delta t=1 / 80=0.0125$. Local higher resolution ($\xi / 10$) during the post-processing by employing Nonuniform Fast Fourier Transform (see Caliari \& Zuccher Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections, 2016, in preparation).

Centerlines and ribbons, $t=23$

Density $\rho=|\psi|^{2}$, isosurface
Back

Phase $\theta=\angle \psi$, scalar cut plane

Back

Phase $\theta=\angle \psi$, isosurface

Vortex centerlines and ribbon edges (black)

Geometric quantities

$S L_{i}=W r_{i}+T w_{i}$
$W r_{i}=\frac{1}{4 \pi} \int_{C_{i}} \int_{C_{i}} \frac{\mathbf{x}-\mathbf{x}^{*}}{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|^{3}} \cdot\left(\mathrm{~d} \mathbf{x} \times \mathrm{d} \mathbf{x}^{*}\right)$
$T w_{i}=\frac{1}{2 \pi} \int_{C_{i}}\left(\mathbf{U} \times \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} \boldsymbol{s}}\right) \cdot \hat{\mathbf{n}} \mathrm{d} \boldsymbol{s}$

Self-linking number

$$
S L=W r+T w
$$

Writhing number

Twist

Total twist

$T w_{i}=N_{i}+T_{i}$

$$
\begin{aligned}
N_{i} & =\frac{1}{2 \pi} \int_{C_{i}} \frac{\mathrm{~d} \varphi(s)}{\mathrm{d} s} \mathrm{~d} s=\frac{[\varphi]_{C_{i}}}{2 \pi} \\
T_{i} & =\frac{1}{2 \pi} \int_{C_{i}} \tau(s) \mathrm{d} s
\end{aligned}
$$

Intrinsic twist

Total torsion

Inflection points

The singularity of torsion at inflection points is integrable, see Moffatt \& Ricca Proc. R. Soc. Lond. A 439, 1992.

Conclusions

- Linked vortex rings evolve towards unlinked vortex loops. As $t \rightarrow \infty, L k_{i j}=0$, so:

$$
H=\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T w_{i}\right) .
$$

- Accurate numerical calculation of all geometric and topological quantities shows that Wr and Tw compensate one another.
- GPE is Hamiltonian and by the Madelung transformation results in compressible Navier-Stokes equations with quantum pressure and quantum stress. GPE seems to conserve helicity while allowing vortex reconnection.

Conclusions

- Linked vortex rings evolve towards unlinked vortex loops. As $t \rightarrow \infty, L k_{i j}=0$, so:

$$
H=\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T w_{i}\right) .
$$

- Accurate numerical calculation of all geometric and topological quantities shows that Wr and Tw compensate one another.
- GPE is Hamiltonian and by the Madelung transformation results in compressible Navier-Stokes equations with quantum pressure and quantum stress. GPE seems to conserve helicity while allowing vortex reconnection.

Conclusions

- Linked vortex rings evolve towards unlinked vortex loops. As $t \rightarrow \infty, L k_{i j}=0$, so:

$$
H=\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T w_{i}\right) .
$$

- Accurate numerical calculation of all geometric and topological quantities shows that Wr and Tw compensate one another.
- GPE is Hamiltonian and by the Madelung transformation results in compressible Navier-Stokes equations with quantum pressure and quantum stress. GPE seems to conserve helicity while allowing vortex reconnection

Conclusions

- Linked vortex rings evolve towards unlinked vortex loops. As $t \rightarrow \infty, L k_{i j}=0$, so:

$$
H=\sum_{i} \Gamma_{i}^{2}\left(W r_{i}+T w_{i}\right) .
$$

- Accurate numerical calculation of all geometric and topological quantities shows that Wr and Tw compensate one another.
- GPE is Hamiltonian and by the Madelung transformation results in compressible Navier-Stokes equations with quantum pressure and quantum stress. GPE seems to conserve helicity while allowing vortex reconnection.

