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A classical transition mechanism

Tollmien-Schlicting (TS) waves first experimentally detected by Schubauer and Skramstad
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Are TS waves the only mechanism?
If the disturbances are not really infinitesimal (real world!)...

...streaks (instead of waves) can develop where the flow is
stable according to the classical neutral stability curve.
Alternative mechanism to TS waves: Transient growth.
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A boundary layer, and its governing equations, can be
thought in an input/output fashion.

Inputs. Initial conditions and boundary conditions.

Outputs. Flow field, which can be measured by a norm.
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In this sense the perturbations are optimal.
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Goals/Tools
Goals

Efficient and robust numerical determination of optimal
perturbations in compressible flows.

Formulation of the optimization problem in the discrete
framework.

Coupling conditions automatically recovered from the
constrained optimization.

Effect of energy norm choice at the outlet.

Tools

Lagrange Multipliers technique.

Iterative algorithm for the determination of optimal initial
condition.
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Problem formulation
Geometry. Flat plate and sphere.

Regimes. Compressible, sub/supersonic. Possibly
reducing to incompressible regime for M → 0.

Equations. Linearized, steady Navier-Stokes equations.
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Scaling (1/2)

Lref is a typical scale of the geometry (L for flat plate, R
for sphere, etc.)

Href =
√

νrefLref/Uref is a typical boundary-layer scale in
the wall-normal direction

Flat plate. Href = l =
√

ν∞L/U∞; ∞ = freestream.

Sphere. Href =
√

νrefR/Uref ; ref = edge-conditions
at xref .

ε = Href/Lref is a small parameter.

Flat plate. ε = Re
−1/2
L , ReL = U∞L/ν∞.

Sphere. ε = Re
−1/2
ref , Reref = UrefR/νref .
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Scaling (2/2)

From previous works, disturbance expected as streamwise
vortices. The natural scaling is therefore

x normalized with Lref , y and z scaled with εLref .

u is scaled with Uref , v and w with εUref .

T with Tref and p with ε2ρrefU
2
ref . ρ eliminated through the

state equation.

Due to the scaling, (·)xx << 1. The equations are parabolic!

By assuming perturbations in the form q(x, y) exp(iβz) (flat
plate – β spanwise wavenumber) and q(x, y) exp(imφ)
(sphere – m azimuthal index)...
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Governing equations

(Af)x = (Dfy)x + B0f + B1fy + B2fyy

f = [u, v, w, T, p]T; A, B0, B1, B2, D 5 × 5 real matrices.

Boundary conditions

y = 0 : u = 0; v = 0; w = 0; T = 0

y → ∞ : u → 0; w → 0; p → 0; T → 0

More compactly
(H1f)x + H2f = 0

with H1 = A − D(·)y; H2 = −B0 − B1(·)y − B2(·)yy
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Objective function (1/2)
Caveat !

Results depend on the choice of the objective function.

Physics dominated by streamwise vortices.

Common choices of the energy norms.
Inlet. vin 6= 0 and win 6= 0 (uin = Tin = 0).
Outlet. vout = 0 and wout = 0 (uin 6= 0; Tin 6= 0).

Blunt body. Largest transient growth close to the
stagnation point.

Due to short x-interval, a streaks-dominated flow
field might not be completely established.
Contribution of vout and wout could be non negligible.

Outlet norm. FEN vs. PEN
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Objective function (2/2)
Mack’s energy norm (derived for flat plate and temporal
problem), after scaling and using state equation,

Eout =

∫ ∞

0

[
ρsout(u

2
out + v2

out + w2
out) +

psoutT
2
out

(γ − 1)Ts
2
outM

2

]
dy

or in matrix form as Eout =

∫
∞

0

(
fT
outM̃outfout

)
dy, with

M̃ out = diag

(
ρsout, ρsout, ρsout,

psout

(γ − 1)Ts
2
outM

2
, 0

)
.

Initial energy of the perturbation

Ein =

∫
∞

0

[
ρsin(v

2
in + w2

in)
]
dy ⇒ Ein =

∫
∞

0

(
fT
inM̃ infin

)
dy
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Constrained optimization (1/3)
Our constraints are the governing equations, boundary
conditions and the normalization condition Ein = E0.

After discretization (M 0 ⇔ M̃ in and MN ⇔ M̃out),

objective function J = fT
NMN fN

constraint Ein = E0 ⇒ fT
0 M0f0 = E0

governing equations (BC included) Cn+1fn+1 = Bnfn

The augmented functional L is

L(f0, . . . , fN ) = fTNMN fN + λ0[fT
0 M0f0 − E0] +

N−1∑

n=0

[
pT

n (Cn+1fn+1 − Bnfn)
]

with λ0 and (vector) pn Lagrangian multipliers.
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Constrained optimization (2/3)
By adding and subtracting pT

n+1Bn+1fn+1 in the summation,

N−1∑

n=0

[
pT

n (Cn+1fn+1 − Bnfn)
]

=

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

N−1∑

n=0

[
pT

n+1Bn+1fn+1 − pT
nBnfn

]

=

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

pT
N

BN fN − pT
0 B0f0,

L(f0, . . . , fN ) = fT
N

MN fN +

N−1∑

n=0

[
pT

nCn+1fn+1 − pT
n+1Bn+1fn+1

]
+

pT
N

BN fN − pT
0 B0f0 + λ0[fT

0 M0f0 − E0].

Stationary condition

δL = 0 ⇒
δL

δf0
δf0 +

N−2∑

n=0

[
δL

δfn+1

δfn+1

]
+

δL

δfN
δfN = 0
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Constrained optimization (3/3)
δL

δf0
= −pT

0 B0 + 2λ0f
T
0 M0 = 0

δL

δfn+1

= pT
nCn+1 − pT

n+1Bn+1 = 0, n = 0, . . . , N − 2

δL

δfN
= 2fT

N
MN + pT

N
BN = 0

Inlet conditions : f0j =





(pT
0 B0)j

2λ0M0jj

if M0jj 6= 0

0 if M0jj = 0

“Adjoint” equations : pT
nCn+1 − pT

n+1Bn+1 = 0

Oulet conditions : B
T
NpN = −2M

T
N fN
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An optimization algorithm

1. guessed initial condition f
(0)
in

2. solution of forward problem with the IC f
(n)
in

3. evaluation of objective function J (n) = E
(n)
out. If

|J (n)/J (n−1) − 1| < εt optimization converged

4. if |J (n)/J (n−1) − 1| > εt outlet conditions provide the
“initial” conditions for the backward problem at x = xout

5. backward solution of the “adjoint” problem from x = xout

to x = xin

6. from the inlet conditions, update of the initial condition

for the forward problem f
(n+1)
in

7. repeat from step 2 on
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Results
Discretization.

2nd-order backward finite differences in x and
4th-order finite differences in y.

Uneven grids in both x and y.

Code verified against results by Tumin & Reshotko
(2003, 2004) obtained with spectral collocation method.

Inlet norm includes vin and win only.

Outlet norm.
Partial Energy Norm (PEN) uout and Tout only.
Full Energy Norm (FEN) uout, vout, wout, Tout.
FEN depends on Re, PEN is Re-independent.
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Results – Flat plate

Re = 10
3

Re = 10
4

Re → ∞

β

G
/R

e

10.80.60.40.20

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

Objective function G/Re: effect of Re and β for M = 3, Tw/Tad = 1, xin = 0 xout = 1.0,
FEN.

⇒ Reynolds number effects only for Re < 104.
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Results – Flat plate

β

G
/R

e

10.80.60.40.2

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Objective function G/Re: effect of β, Tw/Tad and norm choice (PEN vs. FEN) for M = 0.5,
Re = 103, xin = 0 xout = 1.0. 2, Tw/Tad = 1.00; ◦, Tw/Tad = 0.50; M, Tw/Tad = 0.25.

⇒ No remarkable norm effects; cold wall destabilizing factor.
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Results – Flat plate

β

G
/R

e

10.80.60.40.2

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Objective function G/Re: effect of β, Tw/Tad and norm choice (PEN vs. FEN) for M = 1.5,
Re = 103, xin = 0 xout = 1.0. 2, Tw/Tad = 1.00; ◦, Tw/Tad = 0.50; M, Tw/Tad = 0.25.

⇒ Shift of the curves maximum, enhanced difference between norms (Tw/Tad = 1.00).
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Results – Flat plate

β

G
/R

e

10.80.60.40.20

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

Objective function G/Re: effect of β, Tw/Tad and norm choice (PEN vs. FEN) for M = 3,
Re = 103, xin = 0 xout = 1.0. 2, Tw/Tad = 1.00; ◦, Tw/Tad = 0.50; M, Tw/Tad = 0.25.

⇒ Up to 17% difference for low values of β.
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Results – Flat plate

β

G
/R

e

0.80.70.60.50.40.30.20.1

0.0025

0.002

0.0015

0.001

0.0005

0

Objective function G/Re: effect of xin and β and norm choice (PEN vs. FEN) for M = 3,
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⇒ Up to 60% difference for xin = 0.4 and β = 0.1.
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Results – Flat plate
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⇒ No significant changes in vin, some discrepancies in win; larger effects on vout, rather

than on wout. No significant effects on uout and Tout.
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Results – Sphere
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⇒ Largest gain for small θout − θin; strongest transient growth close to the stagnation point.
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Results – Sphere
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⇒ Maximum appreciable difference within 1%. Effect increases with ε.
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Conclusions

√
Efficient and robust numerical method for computing
compressible optimal perturbations on flat plate and
sphere.

√
Adjoint-based optimization technique in the discrete
framework and automatic in/out-let conditions.

√
Analysis including full energy norm at the outlet.

√
Flat plate. For Re = 103, significant difference in G/Re
(up to 62%) between PEN and FEN. Effect of M and
xin. No effect in subsonic basic flow. If Re > 104, vout

and wout do not play significant role.
√

Sphere. Largest Gε2 close to the stagnation point and
for small range of θ. No significant role played by vout

and wout in the interesting range of parameters.
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The End!
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Are we missing something?

At non-infinitesimal level of disturbance streaks are
observed on a flat plate, instead of
Tollmien–Schlichting waves.

Linear Stability Theory (classical modal approach) fails
even for the simplest geometries (Hagen-Poiseuille pipe
flow, predicted stability vs. Recrex ≈ 2300)!

Certain transitional phenomena have no explanation
yet, e.g. the “blunt body paradox” on spherical
fore-bodies at super/hypersonic speeds.

There must exist another mechanism, not related to the
eigenvalue analysis: transient growth.
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Alternative paths of BL transition

M. V. Morkovin, E. Reshotko, and T. Herbert,
(1994),“Transition in open flow systems – A re-
assessment”, Bull. Am. Phys. Soc. 39, 1882.

“At the present time, no
mathematical model exists
that can predict the transition
Reynolds number on a flat
plate”!

Saric et al., Annu. Rev. Fluid
Mech. 2002. 34:291–319
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Transient growth
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