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Cà Vignal 2, Strada Le Grazie 15, I-37134 Verona, Italy

(marco.squassina@univr.it)

Simone Zuccher

Dipartimento di Informatica, Università degli Studi di Verona
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Abstract. We provide a set of numerical simulations for the spatial segregation limit of
two diffusive Lotka-Volterra models in presence of strong competition and inhomogeneous
Dirichlet boundary conditions. We consider the classical non-variational quadratic cou-
pling as well as a cubic coupling which makes the problem variational. For both cases we
perform a numerical investigation of the limiting density distributions, the front tracking,
the segregation rate and the dependence of the shape of the segregated regions upon the
size of diffusion coefficients. This approach can be easily extended to the multi-species
multi-dimensional case.
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1 Introduction

A interesting problem in the study of population ecology is the understanding, both from
a theoretical and numerical point of view, of the strong and competitive interactions
between different species. Under suitable assumptions, as the rate ruling the mutual
interaction of two different species goes to infinity, competition-diffusion systems usually
exhibit a limiting configuration with segregated habitats divided by a smooth interface.
We refer the reader to [3–9, 11, 14–18, 20, 21] and in particular to [4, 5, 18] for models
involving Dirichlet boundary data and to [6, 11] for those requiring zero-flux boundary
conditions. For a complete analysis of the stationary case, we refer to [2]. In the following
we will focus the attention on the Dirichlet case, mentioning some of the most recent
achievements.

1.1 Recent theoretical results

Let du, dv, λ and κ be all positive constants and consider the following two-species two-
dimensional competition-diffusion system







































ut − du∆u = λu(1 − u) − κuv, in (0, 1) × (0, 1) × (0,∞),

vt − dv∆v = λv(1 − v) − κuv, in (0, 1) × (0, 1) × (0,∞),

u(x, y, t) = ψ(x, y, t), on ∂((0, 1) × (0, 1)) × [0,∞),

v(x, y, t) = ζ(x, y, t), on ∂((0, 1) × (0, 1)) × [0,∞),

u(x, y, 0) = u0(x, y), in (0, 1) × (0, 1),

v(x, y, 0) = v0(x, y), in (0, 1) × (0, 1).

(Qκ)

In [5] Crooks, Dancer, Hilhorst, Mimura and Ninomiya proved that there exists a sequence
(uκ, vκ) of solutions to (Qκ) converging, for any T > 0, in L2((0, 1) × (0, 1) × (0, T )) as
κ→ ∞ to a bounded segregated state (u∞, v∞) such that w = u∞ − v∞ solves a limiting
free boundary problem (see problem (3.1)), which determines analytically the segregation
boundary between the two species in the limit κ → ∞. Their study includes the case of
time-dependent boundary conditions and possibly different diffusion coefficients. In the
same paper the authors perform numerical computations showing the comparison between
the contour plots of the solutions of (Qκ) and those of the free boundary problem, for large
values of κ. Quite recently, beside the convergence results on finite-time intervals, in [4],
in the case of equal diffusion coefficients du = dv and stationary boundary conditions,
Crooks, Dancer and Hilhorst studied the long-term segregation for large interactions, by
reducing the system to a single parabolic equation whose solutions have κ-independent
uniform bounds. This enables them to use Lyapunov stability arguments to perform the
long-term analysis. Indeed, stability often follows from a variational structure yielding
an energy functional, bounded and decreasing along the trajectories (see e.g. [10, 23]).
Unfortunately, as far as we know, due to the coupling term −κuv, system (Qκ) does not
admit a natural Lyapunov functional and a direct analysis is therefore not possible. On
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the contrary, system







































ut − du∆u = λu(1 − u) − κuv2, in (0, 1) × (0, 1) × (0,∞),

vt − dv∆v = λv(1 − v) − κvu2, in (0, 1) × (0, 1) × (0,∞),

u(x, y, t) = ψ(x, y, t), on ∂((0, 1) × (0, 1)) × [0,∞),

v(x, y, t) = ζ(x, y, t), on ∂((0, 1) × (0, 1)) × [0,∞),

u(x, y, 0) = u0(x, y), in (0, 1) × (0, 1),

v(x, y, 0) = v0(x, y), in (0, 1) × (0, 1),

(Cκ)

admits a Lyapunov energy and, for steady boundary data, a direct study of the spatial
segregation phenomena has been recently carried out in [22], where the reader can find
references of some physical situation involving such a cubic coupling (e.g. weakly coupled
nonlinear Schrödinger system in R

3). Also the Gray-Scott model [13] of reaction-diffusion
for chemical species and the Schnackenberg model [19] for an artificial tri-molecular chem-
ical reaction involve a cubic-like coupling. It should be noticed that, in the previously
cited works, contrary to the zero flux case, the presence of non-homogeneous boundary
conditions is quite hard to manage as the boundary terms which arise when performing
integration by parts, in general, cannot be estimated uniformly in κ.

1.2 Goal of the present work

The aim of the paper is to provide a set of meaningful numerical simulations for problems
(Qκ) and (Cκ) for a certain class of segregated initial and boundary conditions, with values
between 0 and 1. For both models we investigate the behaviour of the density distributions
uκ(x, y, t) and vκ(x, y, t) for large values of t (i.e. in the steady state regime) and κ. As we
shall see, (Qκ) and (Cκ) segregate in a quite different fashion as −κuκvκ induces a stronger
competition compared with the one in (Cκ). Moreover, we provide a numerical strategy
to track the interfaces between the segregating boundaries. At this point we need to recall
that, while for (Qκ), at least in the case of equal diffusion coefficients, subtracting the
equations of the systems yields a parabolic problem without explicit dependence on the
parameter κ (see the bottom of page 657 in [5] and formula (6) in [4]), this is not possible
for (Cκ) and for models with more general coupling terms. The method that we propose
has the advantage that it can be applied to general situations, without arguing on any
limiting problem, but extracting the maxima from the map {x 7→ u2

κ(x, y, t)v
2
κ(x, y, t)}

at a fixed y ∈ [0, 1] for very large values of t (the steady state regime) and κ. We also
provide a comparison, for (Qκ), on how the interface plots from [5] for the free boundary
problem almost perfectly fit the boundary line detected by our method. Another very
hard problem to handle analytically is the rate of convergence to zero for the following
integral, which measures, in some sense, the segregation rate

Jκ(t) =

∫ 1

0

∫ 1

0

u2
κ(x, y, t)v

2
κ(x, y, t)dxdy. (1.1)

This integral is know to vanish at least as κ−1, but it is expected to decade more rapidly,
say as κ−σ for some σ > 1 (see, e.g., the indication given in the stationary case by [1, (iii)
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of Lemma 4.1]). We confirm this fact numerically, and we extrapolate the values of σ for
both models by graphical comparison. The above integral arises naturally for (Cκ) by
multiplying for uκ (resp. vκ) the equation of uκ (resp. vκ). For the canonical coupling,
system (Qκ), these multiplications yield different quantities, but we evaluate and plot
Jκ(t) also in this case, for the comparison with the values for (Cκ) to be meaningful.
The afore mentioned analysis is performed for a fixed set of initial-boundary data and
for fixed values of λ and du, dv. We also show how the shape of the segregating regions
as well as the rates of decay of Jκ(t) is influenced by the size of the diffusion coefficients.
Finally, we briefly discuss the case where the boundary data are segregated but the initial
data are not. Numerical simulations reveal that the crucial assumption is boundary
segregation, rather than initial data segregation. We stress that our numerical approach
can be easily implemented in the case of three (or more) populations species. To the
authors’ knowledge, the only other papers in literature which consider numerical methods
to study the two-species spatial segregation limit for Lotka-Volterra type models are [5]
for Dirichlet boundary conditions and [12] for the Neumann boundary conditions.

2 Discretization and numerical solution

2.1 Numerical method

Systems (Qκ) and (Cκ) are solved numerically by employing second order, centered, finite
differences on a generally uneven grid both in space and time. Let the computational
domain be Ω × [0, T ] = [0, 1] × [0, 1] × [0, T ] with (x, y) ∈ Ω and T > 0. If Nx and
Ny denote respectively the number of grid points in x and y, after spatial discretization
system (Qκ) (or system (Cκ)) reads as

{

ut = h(u)

u(Ω, 0) = u0,
(2.1)

where u and h(u) are respectively the vector of unknowns and the spatial residual at each
grid point (i, j) organized as follows (δ = 1 refers to (Qκ), δ = 2 to (Cκ))

u = [. . . , ul, vl, . . . ]
T ,

h(u) = [. . . , du∆ul + λul(1 − ul) − κulv
δ
l , dv∆vl + λvl(1 − vl) − κuδ

l vl, . . . ]
T , (2.2)

with l = i+Nx(j − 1), i = 1 . . .Nx, j = 1 . . .Ny.

It should be noted that u0 in (2.1) is the initial condition, whereas the boundary condi-
tions, which are assumed to be steady, are already included in the spatial discretization.
The second-order, implicit, Crank-Nicolson method is used for time discretization in or-
der to avoid possible numerical-stability problems associated with explicit methods and
to allow relatively large time steps. By introducing ∆t = tn+1 − tn, system (2.1) is recast
as







un+1 = un +
∆t

2

[

h(un+1) + h(un)
]

u(Ω, 0) = u0,
(2.3)
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which is a nonlinear functional of the unknown vector un+1. A complete Newton lineariza-
tion is, thus, performed and the Jacobian is recomputed at each Newton iteration so as to
ensure the fast convergence guaranteed by the method. Here the Jacobian is calculated
analytically but, alternatively, it could have been computed numerically by employing
the definition of derivative. The latter strategy, however, would have been very time
consuming. If un+1

r denotes the solution corresponding to the r-th Newton iteration at
t = tn+1, namely at the (n+1)-th time step, convergence to un+1 is considered reached as
||un+1

r −un+1
r−1 ||2 < 10−12. Between three and four Newton iterations were required for the

cases here considered. The initial guess for computing un+1 is un. The steady solution
for t→ ∞ is considered achieved when ||un+1 −un||2 < ǫ, where ǫ is the tolerance chosen
by the user. Results presented in this work were typically obtained with ǫ = 10−4 or
smaller. System (2.3) has some band structure but is clearly very sparse due to the use
of finite differences in two dimensions (i.e. the number of nonzero elements of the matrix
of dimension m is O(m) instead of O(m2), with m = 2NxNy in our case). Therefore, we
used the matrix CSR (Compressed Storage Row) format, which requires one double array
and one integer array of length equal to the number of non-zero elements, and one integer
array of length equal to the dimension of the system. Being the LU decomposition not af-
fordable in such conditions, we preferred to use a semi-iterative solver for (nonsymmetric)
sparse matrices, namely the BiCGStab (BiConiugate Gradient Stabilized [24]) method
preconditioned by ILU(0) (Incomplete LU factorization with no fill-in), already tailored
to CSR format. Although the discretization allows uneven x- and y-grid and variable ∆t,
results are shown for Nx = Ny = 120 (∆x = ∆y ≈ 8.265 · 10−3) and ∆t = 2.5 · 10−4.

2.2 Initial-boundary conditions

As we use the same set of segregated initial-boundary conditions throughout the paper,
we introduce their analytical expression, followed by some figures in the next pages.
Analogous linear density distributions on the boundary have been considered also in [5,
Section 4]. Assuming α ∈ (0, 1/2] and β ∈ [0, 1], the (steady) boundary conditions for
u(x, y, t) and v(x, y, t) are, for any t ≥ 0, defined as follows:

ψ(x, 0, t) =







β −
β

α
x, if 0 ≤ x < α,

0, if α ≤ x ≤ 1,

ψ(x, 1, t) =







β −
β

1 − α
x, if 0 ≤ x < 1 − α,

0, if 1 − α ≤ x ≤ 1,

ψ(0, y, t) = β,

ψ(1, y, t) = 0,
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and

ζ(x, 0, t) =







0, if 0 ≤ x < α,

−
αβ

1 − α
+

β

1 − α
x, if α ≤ x ≤ 1,

ζ(x, 1, t) =







0, if 0 ≤ x < 1 − α,

β(α− 1)

α
+
β

α
x, if 1 − α ≤ x ≤ 1,

ζ(0, y, t) = 0,

ζ(1, y, t) = β.

Initial conditions u(x, y, 0) and v(x, y, 0) used in the numerical simulations are obtained
by linearly interpolating the boundary conditions for every (x, y) ∈ [0, 1]× [0, 1], so as to
ensure their segregation. More explicitly, for any α 6= 1/2, we set:

u0(x, y) =















0, if 0 ≤ y ≤
x− α

1 − 2α
,

β

(

1 −
x

y(1 − 2α) + α

)

, if
x− α

1 − 2α
< y ≤ 1,

(2.4)

v0(x, y) =















x− (y(1 − 2α) + α)

1 − (y(1 − 2α) + α)
β, if 0 ≤ y ≤

x− α

1 − 2α
,

0, if
x− α

1 − 2α
< y ≤ 1.

The particular case α = 1/2 reduces the initial conditions to:

u0(x, y) =











β (1 − 2x) , if 0 ≤ x ≤
1

2
,

0, if
1

2
< x ≤ 1,

(2.5)

v0(x, y) =











0, if 0 ≤ x ≤
1

2
,

β(2x− 1), if
1

2
≤ x ≤ 1.

The initial conditions u0(x, y) and v0(x, y) are reported in figure 1 for α = 0.2 and β = 0.5
(u on the left, v on the right). From the figure and from the analytical expressions (2.4)
and (2.5) it is clear that the initial conditions satisfy the boundary constrains. The two
dimensional maps of u0(x, y) and v0(x, y) (with α = 0.2 and β = 0.5) are reported in
figure 2 in order to visually emphasize the spatial segregation. As we will see (cf. Section
7), the crucial assumption for the spatial segregation to occur is the boundary segregation
rather than the initial data segregation.
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Figure 1: Segregated initial conditions u0(x, y) and v0(x, y). Here α = 0.2 and β = 0.5 (u
appears on the left, v on the right).

3 Density distributions

The main goal of [4, 5, 18, 22] is to provide an analytical justification for the spatial
segregation phenomena of (Qκ) and (Cκ) on finite-time intervals or in the long term.
More precisely, considering for instance the initial-boundary conditions introduced in the
previous section, we recall from [5, Section 3], for model (Qκ), the following

Theorem 3.1. Let T > 0. Then there exists a diverging sequence (κm) and u∞, v∞ ∈ L∞

with

(uκm
, vκm

) → (u∞, v∞) in L2((0, 1) × (0, 1) × (0, T )) × L2((0, 1) × (0, 1) × (0, T )),

as m→ ∞, where 0 ≤ u∞, v∞ ≤ 1 and u∞v∞ = 0 in (0, 1)×(0, 1). Moreover, w = u∞−v∞
is the unique weak solution to the free boundary problem















wt − ∆D(w) = λw(1 − |w|), in (0, 1) × (0, 1) × (0,∞),

Dw(x, y, t) = duψ(x, y, t) − dvζ(x, y, t), on ∂((0, 1) × (0, 1)) × [0,∞),

w(x, y, 0) = u0(x, y) − v0(x, y), in (0, 1) × (0, 1),

(3.1)

where

D(σ) =

{

duσ, if σ ≥ 0,

dvσ, if σ < 0.
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Figure 2: 2D map and contour plot of the segregated initial conditions u0(x, y) and
v0(x, y). Here α = 0.2 and β = 0.5.

In [22], with our choice of initial-boundary data, for model (Cκ) it was proved the following

Theorem 3.2. There exist two diverging sequences (κm), (tm) and u∞, v∞ ∈ H1 ∩ L∞

with

(uκm
(tm), vκm

(tm)) → (u∞, v∞) in Lp((0, 1) × (0, 1)) × Lp((0, 1) × (0, 1)) for any p ≥ 2,

as m→ ∞, where 0 ≤ u∞, v∞ ≤ 1 and u∞v∞ = 0 in (0, 1) × (0, 1). Moreover

−du∆u∞ ≤ λu∞(1 − u∞), −dv∆v∞ ≤ λv∞(1 − v∞),

and u∞|∂(0,1)2 = ψ, v∞|∂(0,1)2 = ζ.

As we have already pointed out in the introduction, due to the cubic coupling, in
the case of (Cκ), it seems not possible to derive a free boundary problem analogous to
the one appearing in the statement of Theorem 3.1. Thus, we were naturally led to
perform some numerical computations of the limiting density distributions u(x, y) and
v(x, y) for (Cκ) as t, κ→ ∞ and to compare the results with those for (Qκ). For the test
shown hereafter different values of κ were used with α = 0.2, β = 0.5, du = 1.5, dv = 1.0,
λ = 50. Figures referring to model (Qκ) are presented first because they allow a direct
comparison with those from [5] (available for κ = 102, 103, 104), which can be used for
the numerical validation of our code. Figure 3 shows the contour plot superimposed
to the 2D map of the steady state solutions u(x, y) and v(x, y) obtained with κ = 104

for model (Qκ). By comparing this figure with the last figure on page 650 of [5] one
can notice a very good qualitative agreement. In order to appreciate more quantitatively
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Figure 3: Model (Qκ), κ = 104, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.
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Figure 4: Model (Qκ), κ = 106, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.

the overlapping with [5], cross sections of u(x, y) and v(x, y) at y = 1/3 are reported in
figure 5. The solid line (present result, κ = 104) and the empty circles (results by [5],

91



κ = 104) match quite remarkably, thus confirming the reliability of the numerical code
developed for these experiments. The main interest is in the limit κ → ∞, for which

Crooks et al. (2004), κ = 104

κ = 106

κ = 104

x

u
(x

,1
/3

),
v
(x

,1
/3

)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 5: Model (Qκ), cross sections of the steady state solution u(x, y) and v(x, y) at
y = 1/3. Comparison with [5] for κ = 104 and between κ = 104 and κ = 106. Here
α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.

the models predicts the spatial segregation of the species. Hence, by looking at the cross
sections, one would expect to see the intersection between the two curves u(x, 1/3) and
v(x, 1/3) moving downwards for increasing κ. This is confirmed by the results obtained
for κ = 106. The 2D maps (figure 4) might look quite similar to the case κ = 104, but
the quantitative comparison between the cross sections at y = 1/3 (figure 5) shows that
for larger values of κ the intersection between the two curves occurs where both u and
v are very close to zero. As a consequence, the segregation front can be more precisely
identified at the location x̄ where this occurs (x̄ = 0.633). Model (Cκ) was investigated by
employing the same coefficients α, β, du, dv, λ as well as the same initial conditions used
for model (Qκ) so as to allow a direct comparison. The 2D maps of u and v (figure 6)
indicate a quite different scenario with respect to the one found for the quadratic model.
Even if the diffusivity of u is 50% larger than the one of v, the region occupied by the
v-species is visibly wider. This can be interpreted, at least from a qualitative point of
view, by observing that the first equation of system (Cκ) can be viewed as system (Qκ)
with a smaller (location-dependent) competition coefficient, κv = κv < κ for the first
equation and κu = κu < κ for the second equation. Of course, this is based on the
fact that [0, 1] × [0, 1] is an invariant region for both systems. Figure 6 shows that the
segregated state is not reached yet (for κ = 104) since there still are overlapping regions
where both u and v coexist. By increasing κ to 106 (figure 7), the segregating regions of
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Figure 6: Model (Cκ), κ = 104, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.
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Figure 7: Model (Cκ), κ = 106, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.

u and v become clearer. Figure 8 reports the cross sections of the steady-state solution
u(x, y) and v(x, y) at y = 1/3. It is quite evident that, also for system (Cκ), segregation
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Figure 8: Model (Cκ), cross sections of the steady state solution u(x, y) and v(x, y) at
y = 1/3, comparison between κ = 104, κ = 106 and κ = 108. Here α = 0.2, β = 0.5,
du = 1.5, dv = 1.0, λ = 50.

is reached in the limit κ→ ∞.

4 Front tracking

The problem of tracking the separation front between the segregating regions occupied
by u and v for κ and t very large is nontrivial [4, 5, 12]. It has to be stressed again that,
while for model (Qκ) the segregating boundary can be analytically represented (cf. [5]) by
the free boundary problem (3.1), this does not seem possible for (Cκ) . Here we propose
a very simple way of front-tracking the boundaries in the case of two species which are
segregated in two regions divided by a single line connecting a point on the lower border
{y = 0} to the corresponding point on the upper border {y = 1} of the square. For more
complex cases (e.g. three species populations or two species segregated in different areas
surrounded by a closed lines, etc.) this idea can be extended without much complication.
In the segregating regime, the function ϕ := u2v2 tends to vanish. As seen for the cross

sections reported in the previous paragraph (see figures 5 and 8), ϕ achieves its maximum
(at fixed y) where the cross sections intersect. As κ goes to infinity, x̄ (i.e. the x-spatial
location at y fixed corresponding to the intersection between u and v) is a good estimate
of the front between the two species. In other words, if γ stands for the limiting front
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κ = 106. Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.
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Figure 10: Model (Cκ), 2D map of ϕ, comparison between the solutions for κ = 104 and
κ = 106. Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0, λ = 50.

curve, it can be parametrized as

y 7→ γ(y), ϕ(γ(y), y) := max
ξ∈[0,1]

ϕ(ξ, y).
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Figure 11: Front tracking of the interface between u and v for different values of κ,
comparison between model (Qκ) and (Cκ). Here α = 0.2, β = 0.5, du = 1.5, dv = 1.0,
λ = 50.

Figure 9 shows a comparison between 2D maps of ϕ obtained with κ = 104 and κ = 106

for model (Qκ). Visually, one can clearly see that for κ → ∞ the region where ϕ is
nonzero becomes very narrow so that the front can be extracted simply by arguing as
indicated above. The very same remarks hold true for model (Cκ), reported in figure 10.
Here it is interesting to note that κ = 106 is still not sufficient to state that the species are
completely segregated. In fact, ϕ is not as small as for model (Qκ), but this was expected
by looking at figure 8. Figure 11 reports the interfaces between the species obtained by
connecting the locations of the maxima of ϕ. The solid line of the figure on the left
compares extremely well with results from [5] obtained by employing, instead, numerical
computation of the free boundary problem (3.1). For model (Cκ), as seen before, the limit
κ→ ∞ can be considered reached for κ not less than 107 (for κ > 107 the front in figure 8
remains essentially unchanged).

5 Segregation rate

In the investigation of spatial segregation phenomena, the analytical determination of
an explicit convergence rate of the solutions towards the limiting state is a very difficult
task. In fact, to the authors’ knowledge, only in [2, Theorem 2], for the stationary two-
species Lotka-Volterra system, an explicit convergence rate, i.e. κ−1/6, is obtained. The
key point in getting this result is, once again, to reduce the system to a single equation (if
du = dv, subtracting the two equations yields an harmonic function), which is successful
only for (Qκ) due to equal competition coupling terms. Hence, it seems natural to retrive
some information on the segregation rate. An object which plays this role and arises in
a natural way in (Cκ) from the standard multiplication of the equation of uκ by uκ (or
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of the equation of vκ by vκ) is the integral Jκ. Here Jκ is the value of integral Jκ(t) in
(1.1) for large t and κ (namely in the steady state regime uκ(t) ≈ u and vκ(t) ≈ v).
Figure 12 shows the comparison between the values of Jκ computed, for the two models,

2.5 · κ−1.26

3.0 · κ−1.68

Model Cκ

Model Qκ
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Figure 12: Segregation rate Jκ as a function of κ for models (Qκ) and (Cκ). Here α = 0.2,
β = 0.5, du = 1.5, dv = 1.0, λ = 50.

as a function of κ. As predicted in [22] for (Cκ), it must be, at least

sup
κ≥1

κJκ <∞.

For (Qκ), a variant of this was proved in [5, Lemma 2.3], namely, for any T > 0,

sup
κ≥1

κ

∫ T

0

∫ 1

0

∫ 1

0

uκvκηdxdydt <∞,

where η = η(x, y) > 0 is the first eigenfunction of the Laplace operator −∆ with ho-
mogeneous boundary conditions. We originally suspected that the decay rated of Jκ as
κ→ ∞ could be stronger than κ−1 for both models (cf., in the stationary case, [1, (iii) of
Lemma 4.1]) and different between the two models. In fact, the numerical experiments
that we performed show that Jκ decays as 3.0 ·κ−1.68 for model (Qκ) and as 2.5 ·κ−1.26 for
model (Cκ). The different decay rates can be easily justified by recalling again that sys-
tem (Cκ) can be seen as system (Qκ) with a smaller competition coefficient κu = κv < κ
for the first equation and κv = κu < κ for the second equation.

97



6 Dependence on diffusion coefficients

In this section we consider the dependence of the shape of the segregated regions and of
the decay rate of Jκ upon the diffusion parameters du and dv. For model (Qκ) the decay

du = 10; dv = 10

du = 0.1; dv = 0.1

du = 10; dv = 0.1

du = 1.5; dv = 1.0
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Figure 13: Segregation rate Jκ for model (Qκ) as a function of κ. Here α = 0.2, β = 0.5,
λ = 50.

of Jκ occurs more or less at the same rate as long as du and dv are the same or at least on
the same order of magnitude (figure 13), whereas the line connecting the calculated points
is less straight for du = 10 and dv = 0.1, namely when the ratio between the diffusion
coefficients is far from 1. The 2D maps look as expected (see figure 14), with the most
diffusive species u (du = 10 and dv = 0.1) occupying almost the whole available territory
when segregation is reached. When the diffusion is the same for both species (figure 15),
results are symmetric (as the boundary conditions), but different solutions are obtained
depending on how large the diffusion is with respect to the other parameters involved.
For instance, when the diffusion is small (figure 15 on the right) both species reach large
densities, while their density remains small if the diffusion is large (figure 15 on the left).
Figure 16, referred to model (Cκ), confirms a behavior similar to figure 13 except for the
difference in the decay rate of Jκ. A remarkable difference between the models tested is
found for the density distribution of the species when one is much more diffusive than
the other one, as reported in figure 17 for model (Cκ) and du = 10, dv = 0.1 (this figure
should be compared with figure 14). Clearly, species u features a behavior quite similar
to what was found for the case du = dv = 10 for model (Qκ), while species v resembles
the behavior found for the case du = dv = 0.1 for model (Qκ).
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Figure 14: Model (Qκ), κ = 106, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 10, dv = 0.1, λ = 50.
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Figure 15: Model (Qκ), κ = 106, 2D map and contour plot of the steady state solution
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Figure 16: Segregation rate Jκ for model (Cκ) as a function of κ. Here α = 0.2, β = 0.5,
λ = 50.
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Figure 17: Model (Cκ), κ = 106, 2D map and contour plot of the steady state solution
u(x, y) and v(x, y). Here α = 0.2, β = 0.5, du = 10, dv = 0.1, λ = 50.
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7 Non-segregated initial data
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Figure 18: 2D map and contour plot of the non-segregated initial conditions u0(x, y) and
v0(x, y). Here α = 0.2 and β = 0.5 for the boundary.

Contrary to the case of (Qκ), model (Cκ) admits a natural Lyapunov functional Λκ,
that can be used to study, in the case of steady boundary data, the long-term behaviour
of the solutions (cf. [22]). By reducing to the case of homogeneous boundary conditions,
taking ũκ = uκ−U , ṽκ = vκ−V (here U(x, y) and V (x, y) denote the harmonic extensions
of the boundary data ψ and ζ), the energy functional Λκ can be written as

Λκ(t) =
1

2

∫ 1

0

∫ 1

0

|∇ũκ(t)|
2 +

1

2

∫ 1

0

∫ 1

0

|∇ṽκ(t)|
2 − λ

∫ 1

0

∫ 1

0

u2
κ(t)

2
−
u3

κ(t)

3

− λ

∫ 1

0

∫ 1

0

v2
κ(t)

2
−
v3

κ(t)

3
+
κ

2

∫ 1

0

∫ 1

0

u2
κ(t)v

2
κ(t).

In particular, as Λκ is non-increasing on [0,∞) (cf. [22, Theorem 2.10]), it is possible to
check that there exist three positive constants A,B,C such that

A ≤ Λκ(t) ≤ B + Cκ

∫ 1

0

∫ 1

0

u2
0v

2
0, t ≥ 0.

Hence, aiming to get κ-uniform a priori estimates for uκ and vκ in H1, a natural assump-
tion to bound Λκ(t) uniformly in κ and in time is that u0v0 = 0, namely segregated initial
data (also in [5], the numerical experiments were carried out under this assumption).
However, tests starting with non-segregated initial conditions (still remaining segregated
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Figure 19: Cross sections of the steady state solution u(x, y) and v(x, y) at y = 1/3, for
model (Cκ) and (Qκ) obtained from segregated initial conditions or non-segregated ones.
Here α = 0.2 and β = 0.5, du = 1.5, dv = 1.0, λ = 50.

along the boundary) reveal that this assumption is not crucial for the species isolation
to appear. The initial conditions we consider are obtained by linearly interpolating the
boundary conditions, at fixed x, between their values on the border {y = 0} and the
border {y = 1}. The linearly interpolated values were further multiplied by the factor
(−x2 + x + 1)(−y2 + y + 1) so as to amplify the solution in the neighbourhood of the
square center and, thus, enhance mixing between the species. Figure 18 reports the 2D
map and contour plot of the non-segregated initial conditions employed. For a quantita-
tive comparison, cross sections for the two models are shown in figure 19. In conclusion,
no dependence on the initial condition is found.

8 Concluding remarks

Numerical experiments focused on various aspects of the spatial segregation phenomena
in two-species two-dimensional competition-diffusion systems with large interactions have
been considered. The analysis was motivated by some recent theoretical results on models
(Qκ) and (Cκ). In the case of (Cκ) a limiting free boundary problem for predicting
the front of the segregating regions cannot be explicitly obtained. Consequently, we
implemented a numerical procedure to compute the front line by employing the maxima
of u2v2 for κ, t → ∞. The rate of spatial segregation as well as the dependence of the
shape of the segregated regions upon the diffusion parameters have been investigated. In
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particular, we confirmed that the segregation occurs with a rate faster than κ−1, fact that
could be conjectured in light of some previous analytical results. Finally, we observed
that initial-data segregation has no influence on the final shape of the segregated regions.
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