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The evolution and the topological cascade of quantum vortices forming Borromean8

rings are studied for the first time. The initial configuration of the system is given9

by three elliptical planar loops linked together, and the evolution is governed by10

the numerical implementation of the Gross-Pitaevskii equation. It is found that the11

topological cascade is not unique, but it depends crucially on the initial geomet-12

ric configuration. Quantum vortices undergo a series of spontaneous reconnections,13

resulting in various degenerative pathways characterized by different topology and14

structural complexity triggered by the different inclination of one of the initial el-15

lipses. Typical decaying routes are given by the successive creation of a Whitehead16

link, a connected sum of two Hopf links, a trefoil knot, a Hopf link, and the final17

formation of unknotted, unlinked loops. By structural complexity analysis we show18

that the generic trend of the vortex decay goes through a series of topological sim-19

plifications, resulting in the formation of small-scale planar loops (rings). During the20

later stage of evolution, the inverse cascade and topological cycles involving the in-21

teraction of unknotted loops become more common, remaining sub-dominant to the22

overall topological simplification process. These results pave the way to investigate23

the fundamental relations between structural complexity and energy contents.24
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I. INTRODUCTION26

In this paper, we address the question of the topological cascade of three quantum vor-27

tex loops linked together to form a system of Borromean rings evolving under the Gross-28

Pitaevskii equation (GPE). The initial configuration of these quantum vortices provides the29

best compromise between a simple superfluid vortex tangle and a realizable topologically30

complex system of defects (more complicated than the cases of interacting line strands, Hopf31

link,1–3); in this sense this work aims to fill the gap between the study of simple interactions32

between quantum vortices and quantum turbulence. Indeed, with the proposed test we33

expect to understand the geometric and topological features of a decaying process experi-34

enced by quantum vortices through a series of interaction/reconnection events, till the final35

creation of unknotted, unlinked loops. The experiment is carried out by direct numerical36

implementation of the Gross-Pitaevskii equation (GPE). Our study on the different cascade37

routes clarifies the importance and probability that a particular decaying path appears to38

have with respect to others. The emphasis of the present work is on the topological aspects39

of the cascade process whereas the associated dynamics and energetics will be discussed in40

another paper.41

Work on the dynamics of quantum vortices governed by the GPE has grown extensively42

in recent years4, from defect interactions5,6 and reconnections1,7–11 to creation and evolution43

of complex tangles in quantum turbulence12–16. Researchers have paid attention also to44

geometric and topological characterization of interacting structures as well, with emphasis45

on the relation between morphological aspects and dynamical considerations2,17–20. The46

discovery of a variety of knots and links formed during quantum turbulence production21,22
47

has strengthened the interest in the actual mechanism of creation and re-organization of48

topologically complex structures3,23,24, especially in relation to the open question of defects’49

energy transfer and localization during an evolution procedure. The present analysis of the50

decay of quantum Borromean rings is indeed inspired by the remarkable similarities of the51

topological cascade of knotted vortices in water25, magnetic tubes26, classical flow27 and the52

DNA catenanes in biology28, and by the theoretical prediction of optimal pathways based53

on knot polynomial invariants in an algebraic space29,30.54

The paper is arranged as follows. In Section II, we present the numerical implementation55

of the governing equation and the initial conditions. In Section III, the leading decaying56
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paths are discussed and an evolution map is presented. In Section IV, key aspects associated57

with different topological patterns (such as statistics, bifurcation and trend features) are58

pointed out. Conclusion is drawn in Section V.59

II. GOVERNING EQUATION, INITIAL CONDITIONS AND60

NUMERICAL SETUP61

We study the evolution of three closed vortex loops initially forming Borromean rings62

(see Figure 1(a) and (b)). Their dynamics is governed by the Gross-Pitaevskii equation63

(GPE)31,32, which in the non-dimensional form reads64

∂Ψ

∂t
=

i
2
∇2Ψ+

i
2
(1− |Ψ|2)Ψ , (1)65

where Ψ = Ψ(x, t) is the condensed matter wavefunction depending on the space x and66

the time t, i denotes the imaginary unit, and ∇2 the Laplace operator. The equation above67

conserves total mass and total energy, together with linear and angular momentum.68

The initial condition for the quantum vortices is given by three inter-linked closed curves69

Ci (i = 1, 2, 3) of the wavefunction forming planar ellipses. In the ideal symmetric case, the70

latter belong to mutually orthogonal planes as shown in Figure 1(c). The vortex circulation71

is taken to be constant and equal to 2π for all the defects (No multiply-charged vortices72

are considered), the fluid density ρ → 1 as x → ∞. According to the fourth-order Padé73

approximation33–35, the fluid density ρ = |Ψ|2 is given by74

ρ(r) =
a1r

2 + a2r
4 + a3r

6 + a4r
8

1 + b1r2 + b2r4 + b3r6 + a4r8
, (2)75

where r denotes the radial distance from a point on the vortex line, and the coefficients76

ai, bi can be found in Reference34 together with the details of the whole derivation for the77

Padé approximation. For a given point P in space, not on the vortex line, the wavefunction78

Ψ(xP , t) is computed in two steps: first, we determine the nearest point O ∈ Ci to P , define79

r = |
−→
OP |, and use eq.(2) to compute

√
ρ(r) = |Ψ|; second, we compute the angle Θ between80

the unit normal at O and
−→
OP , i.e. Θ = argΨ. For the three Borromean rings the resulting81

wavefunction ΨP at P is instantaneously given by the three contributions of each individual82

wavefunction, i.e.83

ΨP = Ψ1P Ψ2P Ψ3P =
√
ρ1ρ2ρ3 e

i(Θ1+Θ2+Θ3) . (3)84
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FIG. 1. (a) Projection diagram of Borromean rings. (b) 3-D representation of the Borromean

rings formed by 3 ellipses, which is topologically equivalent to (a). (c) Symmetric configuration:

the Borromean rings, visualized by three planar elliptical thin tubes at ρiso = 0.05, are centerly

placed orthogonally to each other in the xy-, yz-, and xz-planes for θ = 0. (d) Zoomed-in view of

the symmetric initial configuration. (e) Asymmetric configuration: one ellipse is tilted by an angle

θ > 0 from xz-plane about the x-axis.

A. Numerical setup85

The time evolution of the Borromean rings (hereafter denoted by B for short) is carried86

out by the numerical implementation of eq.(1), prescribing the initial geometry and topology87

of the quantum vortices. This is done following the same methodology as in Reference1, i.e.,88

by employing the second-order Strang splitting approach, in which the linear part (Laplace89

operator) is solved by the Fourier spectral method.90

As described in Reference34, eq.(1) is split into the so-called kinetic and potential parts:91

∂u

∂t
=

i
2
∇2u (4a)92

∂v

∂t
=

i
2

(
1− |v|2

)
v. (4b)93

Eq.(4a) is solved exactly in time after the physical solution is transformed into the Fourier94

(spectral) space. On the other hand, eq.(4b) is solved exactly in the physical space as |v|95

is preserved by the equation. By introducing eτAun(x) and eτB(vn(x))vn(x) to denote the96
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two partial numerical solutions, the numerical approximation Ψn+1(x) of Ψ(x, tn+1) at time97

tn+1 = (n+ 1)τ is recovered by the so-called Strang splitting98

Ψn+1/2(x) = eτAe τ
2
B(Ψn(x))Ψn(x), (5a)99

Ψn+1(x) = e τ
2
B(Ψn+1/2(x))Ψn+1/2(x). (5b)100

The Strang splitting preserves the discrete finite mass in the computational domain and101

is second order accurate in time. Since the time splitting Fourier methods restricted to a102

bounded physical domain can be applied only in the presence of periodic boundary con-103

ditions, initial conditions that are not periodic must be mirrored in the directions lacking104

periodicity, with a consequent increase of the degrees of freedom and computational effort34.105

In our numerical simulations the quantum vortices of circulation 2π are placed in a106

original domain [−45; 30]× [−30; 45]× [−30; 45] discretized by a [225× 225× 225] mesh, so107

that ∆x = ∆y = ∆z = 1/3. The unit length is based on the healing length ξ = 1, which108

corresponds also to the vortex core size. This means that there are three grid points within109

the vortex core. The initial condition is generated in the original domain and then it is110

mirrored in the three spatial dimension to ensure the periodicity required by the Fourier111

approach. The numerical simulation is then carried out in the mirrored numerical domain112

made of [450× 450× 450] grid points, keeping ∆x = ∆y = ∆z = 1/3. The time step113

employed in the Strang splitting method is τ = 1/80. Further technical details regarding114

the numerical method can be found in Reference34.115

For the ideal symmetric case, the initial configuration is given by three planar ellipses116

centred in mutually orthogonal planes as shown in Figure 1(c). In terms of vortex core size117

units, the geometry of the three ellipses is given by an aspect ratio of 30/20. The defects118

are sufficiently separated from each other and from the boundaries of the computational119

domain, to avoid undesired effects. As shown in Figure 1(d), the orientation of the first and120

second ellipses are n1 = (0, 0, 1) and n2 = (−1, 0, 0), with the major axes aligned along the121

x-axis and y-axis, respectively. The orientation of the third ellipse is n3 = (0, cos θ, sin θ)122

with its major axis belonging to the xz-plane and tilted by an angle θ around the x-axis,123

from the z-axis. With the purpose of exploring the effects of geometric perturbations on the124

decaying routes, we have chosen θ = k∆θ ≥ 0 with ∆θ = π
48

and k = 0, 1, . . . , 16, thus 17125

distinct initial conditions are explored, as shown in Figure 1(e) and in the illustration on126

the left vertical axis of Figure 3. We restrict our investigations to θ ≤ 16π/48 = 60◦ because127
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above θ = 16π/48 the distance between vortices may drop below the order of o(2ξ), thus128

preventing a reliable detection of the reconnection events. The dynamics of quantum vortices129

is analyzed in terms of geometry and topology by taking snapshots of the Ψ-evolution at130

every time interval ∆t = 1 (for convenience, noted as “1s”), for the 17 values of θ at t = 0.131

Due to the relative vorticity orientation, the defects tend to reconnect and drift collec-132

tively in the direction of n = n1 + n2 + n3 = (−1, cos θ, 1 + sin θ) towards the negative133

x-axis, and along the positive direction of the y- and z-axis. During the time evolution,134

particular attention is paid to highly bent vortices because their high curvature allows them135

to travel faster, enabling them to quickly reach the boundaries of the computational domain,136

which may result in unreliable dynamics. As the initial angle of inclination θ increases, the137

special separation between the vortices decreases and leads to earlier reconnections, so that138

the type of evolution and the variety of decay patterns are strongly influenced by the initial139

values of θ.140

In this paper, for simplicity, we denote the topologies observed in the simulations without141

the indices that distinguish the positive and negative types (or, the left-handed and right-142

handed forms). The actual chiralities of these topologies are detailed in the Appendix,143

Figure 8 in particular.144

III. TOPOLOGICAL ANALYSIS OF DECAYING PATHS DURING145

EVOLUTION146

The process of topological evolution occurs in a stepwise manner with several topological147

states acting as midway stages. Due to variations in initial conditions, vortex reconnections148

occuring at each stage may differ significantly, leading to a diverse range of decaying paths.149

This diversity gives rise to observable statistical patterns in the selection of these paths,150

providing a deeper insight into the underlying mechanisms governing topological transfor-151

mations.152

By analyzing the various decaying paths generated by the 6-crossings Borromean rings153

B, we can identify 5 typical topological states produced by the reconnections and visualized154

by their pictorial representation as shown in Figure 2. These states are classified according155

to their topological crossing number and given by the 5-crossing (negative) Whitehead link156

W , the 4-crossing connected sum of Hopf links H#H (where the # symbol denotes the157
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FIG. 2. (Top) Zoomed-in snapshots of the main topological states produced during the evolution of

quantum vortices under GPE, seen from the same viewing angle. (Bottom) Pictorial representation

of the topological states observed at various stages of the decaying path: 6-crossings Borromean

rings (B), 5-crossings Whitehead link (W ), 4-crossings connected sum of Hopf links (H#H),

3-crossings trefoil knot (T ), 2-crossings Hopf link (H), and unknotted loop (U).

connected sum operation, which combines two knots into a single composite knot), the 3-158

crossing (left-hand) trefoil knot T , the 2-crossing (negative) Hopf link H , and the unknotted159

loop U . This sequence represents a family of key topological types produced during the160

various decaying paths, but the path is neither unique, nor reproduced in its entirety by the161

different pathways.162

To describe the specific decaying paths produced by the Borromean rings for each initial163

configuration prescribed by one of the 17 inclination angles we must analyze each topological164

cascade in detail, and thus a much richer scenario is obtained, as summarized in Figure 3.165

Note that the family of topological states and the transitional paths detected by the present166

simulations represent only a small subset of all the possible topological states or paths167

admissible in principle by the theoretical analysis based on the minimal diagram projections168

of knot theory (see Section A and Figure 8 in Appendix).169

With reference to Figure 3, since each snapshot corresponds to one time unit, the hori-170

zontal extent of a colored region (i.e., a topological type) provides direct information about171

its persistence before undergoing reconnection, offering a measure of its topological lifetime.172

Another direct information comes from the total area represented by the colored regions,173

which is a measure directly related to the topological persistence for various angles. From174

this we can evidently conclude that the Whitehead link W represents a rather rare and175
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FIG. 3. Summary of the topological cascade of the Borromean rings by varying values of θ,

from 0 to 16π/48. By varying θ = kπ/48 for k ∈ {0, 1, . . . , 16}, the initial configuration of the

Borromean rings evolves dynamically. Strands interact, reconnect, and form distinct topological

types through various pathways. Inset: Colors denote different topological configurations realized

during the evolution, as indicated by the different values of θ. Vertical axis (left): The values

of θ as defined in the inset. For simplicity, only 4 of the 17 prescribed values are indicated.

Horizontal axis (bottom): Time units are shown for t ∈ [0, 190], with critical time values marking

typical topological transitions. Legend: Each colored box represents a specific topology at a given

time, characterized by a decreasing topological crossing number n (from the 6-crossing Borromean

rings to the 0-crossing unknotted loop) and an increasing number of unknots. Together, these

configurations form a spectrum of topological states.

short-lived occurrence, whereas the presence of trefoil knots with disjoint, unlinked single176

loops (denoted by T ⊔U ) is a recurrent feature. It should be noted that the above statistical177

results are limited to the initial conditions considered in this study. In Reference36, for ex-178

ample, the evolution of asymmetrical Borromean rings B under different initial conditions179
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resulted in a longer-lived Whitehead link W .180

For θ = 0 the Borromean rings collapses directly to form first a trefoil knot and an unknot181

(represented by the disjoint union T ⊔U ), then a collection of 3, 4 or more unknots (denoted182

respectively by U 3 and U 4+), and even a reverse cascade of T ⊔U , till the final production183

of several unknots U 4+. A more elaborate cascade is produced by θ = 9π/48, where we have184

B → W → T → H → U → U 2 → U 3 → U 4+ → U∆ (6)185

where by U∆ we denote the alternative production of 2 or 3 disjoint unknotted loops. For186

θ = 16π/48 we have an initial gradual decrease of crossing numbers from 6 to 4, given by the187

sequence B → W → H#H , before jumping to the production of Hopf links and unknots.188

As discussed in Reference3 the topological collapse is due to the instantaneous multiple189

reconnections at different sites on the vortex strands, while the inverse cascade is due to the190

casual tying of the vortex strands. The latter was observed in3, where a trefoil knot was191

generated by successive reconnections of two unlinked, perturbed rings. As can be seen from192

the whole spectra of decaying paths shown in Figure 3, a general trend can be observed in the193

transition from red to shades of grey, with few minor reversals. A predictive theory for these194

specific transitions is almost impossible due to the complexity of the nonlinearities involved.195

However, the overall trend remains clear: the system evolves from a topologically complex196

state toward a collection of unknots, with inverse transitions being relatively rare and not197

altering the dominant trajectory. Such a behavior is also observed in simulations of quantum198

turbulence and confirmed by the knot spectrum analysis carried out in Reference21. Insights199

regarding the irreversibility associated with these transitions con be found in References11,37.200

A visual representation of the key routes of topological simplification is shown in Figure 4.201

Black arrows denote the possible pathways by a single reconnection, while the colored lines202

identify the routes associated with the prescribed initial conditions given in the insets. Note203

that the wiggled lines denoting topologically cyclic jumping3 take place prevalently in the204

lower-right part of the diagrams. The direction of knot evolution is primarily governed by205

two mechanisms: topological simplification and generation of unknots.206

From a topological dynamical viewpoint, in agreement with the classification proposed207

in Reference3, the evolution process is roughly composed of several regions, as shown in208

Figure 5:209
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FIG. 4. Evolutionary routes generated by incrementally varying a single geometric parameter θ

across 17 experiments.

• Type-I of almost-monotonical degeneration (top-left, yellow): Most configurations in210

this region are of relatively complex topology, and the transitions are dominated by211

a marked prevalence of direct decays from a higher complexity state to a lower com-212

plexity state.213

• Type-II of wiggling cyclic evolutions (lower-right, blue): This region is characterized214

by cyclic productions of a collection of unknotted loops, with a minor possibility of215

forming Hopf links or even trefoil knots.216
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FIG. 5. Type-I and Type-II regions, as well as the gradually changing region, identified by the

distinguished pattern of topological simplification.

• Region of gradual changing (in between I and II): As the topology becomes progres-217

sively simpler, the generation of unknots begins to challenge the dominance of topo-218

logical simplification. In this region, the evolution routes exhibit certain reversibility,219

although reverse-processes remain significantly less frequent than forward-ones. When220

the system’s primary topology gradually turns to the trivial unknots, reverse processes,221

still a minority though, become more and more non-negligible.222

The border between the two dynamical regimes, monotonical and wiggling, is also evident223

from the diagram of Figure 3, where the transition between the Type-I and II regions is224

marked by the first border from the Hopf Link H (blue) to the Unknots Un (gray).225

IV. STATISTICS AND BIFURCATION GRAPHS FROM TOPOLOGICAL226

TRANSITIONS227

In order to provide estimates to quantify the prevalence or probability of the observed228

phenomena we introduce a simple statistical measure based on the collected data. In this229

regard it is convenient to restrict the analysis to the time range t ∈ [0, 90], as shown in230
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FIG. 6. (a) Probabilities P and (b) transition rates R associated with topological transitions.

The black arrows denote the direct topological cascades, where the solid and dashed lines refer

to the single and multiple untying processes, respectively. The orange arrows denote the inverse

topological cascades, where the solid and dashed lines refer to the single and multiple tying processes,

respectively.

Figure 9 of Appendix, where most of the interesting transitions occur. Data are thus ana-231

lyzed as per the 91 time units for the 17 angles prescribed represented by the 1547 boxes232

(snapshots). For this time range we count a total of 186 topological changes, on the top of233

which we examine two quantitative indices:234

• Pathway selection probability, Pij = P (Ki → Kj) = Np(Ki → Kj)/
∑

j Np(Ki → Kj)235

The ratio P serves as the pathway selection probability associated with each observed236

topological transition. Here Np(Ki → Kj) is the number of topological changes hap-237

pening on a studied pathway Ki → Kj, from one topological state Ki to Kj, including238

those within the topological cycles.Data of P are presented in Figure 6(a).239

• Topological transition rate, Rij = R(Ki → Kj) = Np(Ki → Kj)/N(Ki)240

R is introduced to evaluate the transition frequency along each pathway. Here N(Ki)241

represents the number of snapshots associated with a studied topology Ki for all specific242
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θ (given by the number of time units along the time axis of Figure 3). Data of R are243

shown in Figure 6(b).244

R provides an estimate for the topological persistence of a given state, which further245

leads to another measure, the average life τ , for a given configuration K as τi =246 [∑
j Rij)

]−1

. A computational example is T ⊔ U : its transitions to the trefoil T , to247

H ⊔ U and to U 3 relatively slow, account for the most persistent events, hence the248

average life of T ⊔U is computed as τ (T ⊔U ) = (0.51%/ s + .53%/ s + 0.51%/s)−1 =249

39.20 s.250

A. Modified crossing number and dynamical bifurcation graphs251

Two geometric and topological measures of structural complexity provide useful informa-252

tion for understanding subtle features of the dynamical evolution of a vortex tangle. One is253

the writhing number of a closed space curve C, defined by38
254

Wr(C) = 1

4π

∮
C

∮
C

X − Y

∥X − Y ∥3
· (dX × dY ) , (7)255

where X and Y denote two distinct points on C. This is a global geometric measure of the256

folding and twisting of a loop in space, and is a continuous function of the geometry, taking257

real values. The other is the Gauss linking number of two closed space curves C1 and C2,258

given by39
259

Lk(C1, C2) =
1

4π

∮
C1

∮
C2

X1 −X2

∥X1 −X2∥3
· (dX1 × dX2) , (8)260

where X1 ∈ C1 and X2 ∈ C2. The linking number gives information on the linkage of C1261

and C2 and is a topological invariant of the link, taking only integer values. The centerlines262

Ci are extracted from the ψ-field first by looking for points of minimum density and then263

by fitting them so as to ensure a smooth line in the three-dimensional space2,3,35. A linear264

combination of Wr and Lk, extended to a number i = 1, 2, . . . of vortices present, provides265

a useful measure of structural complexity of the tangle; this is the total writhe40
266

Wrtot =
∑
i

Wri(Ci) +
∑
i ̸=j

Lki,j(Ci, Cj). (9)267

This quantity is computed for each time step to provide a dynamical information of the268

tangle evolution.269
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To capture the topologically evolutionary direction of the system and provide a finer270

description for the transitions between topological states, we introduce a modified crossing271

number, χ, to measure the system’s structural complexity272

χ = n+ χs, (10)273

where n is the usual minimal crossing number, playing the primary, dominant role in quanti-274

fying the topological complexity, whereas χs is a secondary term standing for a modification,275

χs = −ϵ(m− 1), χs < 1, (11)276

where m counts the number of knots, links or unknots in the system at a certain moment.277

The part (m − 1), indeed, refers to the components surrounding the primary knot/link.278

For instance, in an H ⊔ U 2 state, the total number of components is m = 3, while those279

surrounding the primary link H are the other m − 1 = 2 circles. ϵ is an order-controlling280

parameter, to ensure that χs remains subordinate to the primary term n in order, namely,281

ϵ = o(1). In this work, we adopt ϵ = 0.2.282

The essence of χ is threefold.283

• The ambient influence of dominant structures is considered, emphasizing the significant284

contributions of each non-trivial knot or link to the vortex ensemble.285

• When m ̸= 1, χs gives rise to a splitting of the dominant crossing number n, so as to286

reveal a richer structure containing several refined sub-levels beyond the primary level287

n (see the vertical axis of Figure 7).288

Typical examples include: T , which is split into T and T ⊔U ; H , which is split into289

H , H ⊔U and H ⊔U 2; and U , which is split into U 1, U 2, U 3 and U 4+, sequentially.290

• Within the framework of χ, one can see more topological transitions taking place in291

between the new refined sub-states.292

Figure 7 reports the time evolution of χ against the total writhe Wrtot for the 17 evolutions293

in the time range t ∈ [0, 90]. Since Wrtot is a continuous function of the geometry, to294

facilitate a more direct interpretation of the relationship between χ and Wrtot, we divide295

the range of Wrtot into segments of width ∆Wr = 1
3
. For each segment, the number of296

snapshots is counted and represented by the area of a square placed at the midpoint of the297
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FIG. 7. Bifurcation graph illustrating the topological dynamics of evolutionary complexity (χ)

as a function of morphology (Wrtot), with data spanning values of θ from 0 to 16π/48 and time

t ∈ [0, 90]. The initial conditions are represented by a white circle located at the top-middle of

the graph. The size of each square indicates the number of snapshot data points near a given

writhe value for a specific topology, with the area corresponding to the total number of time units

(persistence) achieved during the evolution. Horizontal lines represent writhe changes that occur

without altering the topology. Light blue lines denote a reduction in evolutionary complexity

(∆χ < 0), and light orange lines an increase in complexity (∆χ > 0). Line thickness reflects the

relative proportion of events evolving from one state to another, thicker lines representing a larger

percentage (up to 100%).

segment. Since at time t = 0 the set of Borromean rings is given by three planar ellipses,298

i.e., the writhe of every single component is zero, the total writhe value is zero, and thus the299

Gauss linking number of the system is also zero, which is a very special case of non-trivial300

linking.301

The graph plotted in Figure 7 represents a bifurcation diagram of topological dynamics302
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where a number of key features emerge distinctly. First, it illustrates the dominant effects303

of a direct topological cascade of a complex tangle, providing quantitative information of304

the relative topological persistence of single events. Second, the marked emergence of trefoil305

knots, followed by a sea of unknotted loops. Third, the increasing dispersion of writhe306

values (more extreme convoluted structures form at the expense of topology) as time passes,307

with the final production (bottom part of the graph) of more and more loops attaining308

an averaged zero writhe, in agreement with the observed final production of small vortex309

rings2,3.310

V. CONCLUSION311

In this paper we address the question of how a topologically complex system of quantum312

vortices forming a set of Borromean rings evolves under the Gross-Pitaevskii equation. Nu-313

merical simulations have been carried out by employing the Strang time splitting Fourier314

method. Among the possible ways of generating a set of initial conditions that differ by a315

geometric parameter, we have chosen to vary the tilting angle of one ring, and thus obtaining316

17 different evolutionary pathways. Each path has been analyzed in great detail in terms of317

topology and structural complexity, observing 186 instances of topological changes due to318

the reconnection events occurred during the time evolution.319

With this work we have discovered and proven several interesting results. Starting from320

a relatively complex tangle of vortices, we confirm that the decay process is dominated by321

a direct topological cascade driven by a continuous topological simplification of the tangle322

towards the production of unlinked, unknotted loops. This result is in good agreement323

with earlier studies3,23 of decaying quantum vortex defects, a feature shared by classical324

turbulence as well. In agreement with the observations of Reference21, inverse topological325

cascades do occur as well, but they represent rare events that tend to happen in secondary326

regimes of mixed topological cycles, when interactions between simple unknotted loops are327

dominant (see Figures 4 and 5). The chart of Figure 3 and the diagrams of Figure 6 provide328

quantitative measurements of the observations. Figure 7, by reporting a modified crossing329

number χ that contains the usual n-part delivering the tangling and linking information of a330

vortex system, and an extra χs-part that incorporates unlinked vortex clusters in relation to331

cascade fragmentation, confirms that trefoil knots tend to be relatively persistent and writhe332
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values tend to get dispersed over time, with the mean value distributing around zero in the333

last evolutionary stages of the process. Since zero writhe is a signature of planarity, this334

confirms the overall trend towards the generation of small-scale planar loops (rings). Such335

a comprehensive representation not only distinguishes a broader spectrum of topological336

states beyond the typical archetypes, but also provides a more convenient and precise tool337

to capture the evolutionary scenario, thus making the modified crossing number χ possibly338

suitable for applications beyond the current study.339

The trend that leads structures to undergo free evolution through topological simplifica-340

tion therefore becomes an established fact and main result of this paper. The implications341

of this generic behavior in energy transfers is a question currently under investigation, which342

we hope to be able to address in a subsequent paper.343
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Appendix A: Topological transistion chart464

FIG. 8. Pictorial representation of the admissible topological transitions possible in theory. Thick-

ened band arrows denote the actual topological cascades observed in the simulation.

Figure 8 shows all the admissible topological transitions that the Borromean rings may465

undergo from the mathematical point of view, based on the analysis of the minimal diagram466

projections of knot theory39. According to the relative strand orientations we can distinguish467

different knot types identified by the positive and negative Whitehead links W±, the figure-468

of-eight knot F 8, the right- and left-handed trefoil knot T R/L, the positive and negative469

Hopf link H±, and their various disjoint union of these topological types. The dashed470

arrows denote the transitions admissible in theory, but not observed in the 17 experiments,471

whereas the thickened band arrows denote the actual topological transitions observed in the472

simulations.473

The focus of this paper is on the cascade process of quantum vortex knots system. The474

underlying knot theory and statistical mechanics origins will be discussed in detail in a475

separate paper.476
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Appendix B: Topological cascade in the time range t ∈ [0, 90]477

Restricting the topological analysis to the time range t ∈ [0, 90] (see Figure 9) we can478

identify four different regions, separated by the dashed lines α, β and γ. These regions479

capture the topological persistence of the key topological configurations observed throughout480

the simulations. The narrow region between the α- and β-curve highlights the brief transient481

production of 5- and 4-crossing structures and marks the rapid passage to the formation of482

trefoil knots and Hopf links. The green area is made of trefoil knots and single unknots with483

equal “probability” distribution (marked by the γ-curve), till the final production of several484

unknots that populates the shades of grey area.485

FIG. 9. Topological cascade of the Borromean rings by various values of θ, from 0 to 16π/48,

restricted to the time range t ∈ [0, 90].

Appendix C: Probability of topological transition486

Computation of the probability Pij = P (Ki → Kj) associated with a single topological487

transition Ki → Kj is based on the numbers Np(Ki → Kj) and
∑

j Np(Ki → Kj) of topo-488

logical changes and reconnections observed. For example, the total number of reconnections489

observed for the transitions of the Borromean rings B to produce H ⊔H , W and T ⊔U490
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is 17, only one of which determines the production of H ⊔ H and one the production of491

T ⊔U ; the remaining 15 lead to the formation of the Whitehead link W . We have492

P (B → H#H)493

=
Np(B → H#H)

Np(B → H#H) +Np(B → W ) +Np(B → T ⊔U )
494

=
1

1 + 15 + 1
=

1

17
= 5.9%. (C1)495

where ⊔ standing for disjointed union, and # the direct sum.496

FIG. 10. Computation of the probability Pt of topological transitions based on the numbers Nc

and Nr of topological changes and reconnections occurring along pathways.
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