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ABSTRACT

The evolution and the topological cascade of quantum vortices forming Borromean rings are studied for the first time. The initial
configuration of the system is given by three elliptical planar loops linked together, and the evolution is governed by the numerical
implementation of the Gross–Pitaevskii equation. It is found that the topological cascade is not unique, but it depends crucially on the initial
geometric configuration. Quantum vortices undergo a series of spontaneous reconnections, resulting in various degenerative pathways
characterized by different topology and structural complexity triggered by the different inclination of one of the initial ellipses. Typical
decaying routes are given by the successive creation of a Whitehead link, a connected sum of two Hopf links, a trefoil knot, a Hopf link, and
the final formation of unknotted, unlinked loops. By structural complexity analysis, we show that the generic trend of the vortex decay goes
through a series of topological simplifications, resulting in the formation of small-scale planar loops (rings). During the later stage of evolu-
tion, the inverse cascade and topological cycles involving the interaction of unknotted loops become more common, remaining sub-
dominant to the overall topological simplification process. These results pave the way to investigate the fundamental relations between struc-
tural complexity and energy contents.
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I. INTRODUCTION

In this paper, we address the question of the topological cascade
of three quantum vortex loops linked together to form a system of
Borromean rings evolving under the Gross–Pitaevskii equation (GPE).
The initial configuration of these quantum vortices provides the best
compromise between a simple superfluid vortex tangle and a realizable
topologically complex system of defects (more complicated than the
cases of interacting line strands, Hopf link1–3); in this sense, this work
aims to fill the gap between the study of simple interactions between
quantum vortices and quantum turbulence. Indeed, with the proposed
test, we expect to understand the geometric and topological features of
a decaying process experienced by quantum vortices through a series
of interaction/reconnection events, till the final creation of unknotted,
unlinked loops. The experiment is carried out by direct numerical
implementation of the Gross–Pitaevskii equation (GPE). Our study on
the different cascade routes clarifies the importance and probability
that a particular decaying path appears to have with respect to others.
The emphasis of the present work is on the topological aspects of the
cascade process, whereas the associated dynamics and energetics will
be discussed in another paper.

Work on the dynamics of quantum vortices governed by
the GPE has grown extensively in recent years,4 from defect

interactions5,6 and reconnections1,7–11 to creation and evolution of
complex tangles in quantum turbulence.12–16 Researchers have
paid attention also to geometric and topological characterization
of interacting structures as well, with emphasis on the relation
between morphological aspects and dynamical considerations.2,17–20

The discovery of a variety of knots and links formed during quan-
tum turbulence production21,22 has strengthened the interest in the
actual mechanism of creation and re-organization of topologically
complex structures,3,23,24 especially in relation to the open question
of defects’ energy transfer and localization during an evolution pro-
cedure. The present analysis of the decay of quantum Borromean
rings is, indeed, inspired by the remarkable similarities of the
topological cascade of knotted vortices in water,25 magnetic tubes,26

classical flow,27 and the DNA catenanes in biology,28 and by the the-
oretical prediction of optimal pathways based on knot polynomial
invariants in an algebraic space.29,30

This paper is arranged as follows. In Sec. II, we present the
numerical implementation of the governing equation and the initial
conditions. In Sec. III, the leading decaying paths are discussed, and an
evolution map is presented. In Sec. IV, key aspects associated with dif-
ferent topological patterns (such as statistics, bifurcation, and trend
features) are pointed out. Conclusion is drawn in Sec. V.

Phys. Fluids 37, 024126 (2025); doi: 10.1063/5.0252708 37, 024126-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

https://doi.org/10.1063/5.0252708
https://doi.org/10.1063/5.0252708
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0252708
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0252708&domain=pdf&date_stamp=2025-02-20
https://orcid.org/0009-0000-0268-2090
https://orcid.org/0000-0002-9057-6892
https://orcid.org/0000-0001-9756-4264
mailto:xin.liu@bjut.edu.cn
https://doi.org/10.1063/5.0252708
pubs.aip.org/aip/phf


II. GOVERNING EQUATION, INITIAL CONDITIONS, AND
NUMERICAL SETUP

We study the evolution of three closed vortex loops initially form-
ing Borromean rings [see Figs. 1(a) and 1(b)]. Their dynamics is
governed by the Gross–Pitaevskii equation (GPE),31,32 which, in the
non-dimensional form, reads

@W
@t

¼ i
2
r2Wþ i

2
ð1� jWj2ÞW; (1)

where W ¼ Wðx; tÞ is the condensed matter wavefunction depending
on the space x and the time t, i denotes the imaginary unit, and r2 is
the Laplace operator. The aforementioned equation conserves total
mass and total energy, together with linear and angular momentum.

The initial condition for the quantum vortices is given by three
inter-linked closed curves Ci (i ¼ 1; 2; 3) of the wavefunction forming
planar ellipses. In the ideal symmetric case, the latter belong to mutu-
ally orthogonal planes, as shown in Fig. 1(c). The vortex circulation is
taken to be constant and equal to 2p for all the defects (no multiply
charged vortices are considered), the fluid density q ! 1 as x ! 1.
According to the fourth-order Pad�e approximation,33–35 the fluid den-
sity q ¼ jWj2 is given by

qðrÞ ¼ a1r2 þ a2r4 þ a3r6 þ a4r8

1þ b1r2 þ b2r4 þ b3r6 þ a4r8
; (2)

where r denotes the radial distance from a point on the vortex line,
and the coefficients ai; bi can be found in Ref. 34 together with the
details of the whole derivation for the Pad�e approximation. For a given
point P in space, not on the vortex line, the wavefunction WðxP; tÞ is
computed in two steps: first, we determine the nearest point O 2 Ci to
P, define r ¼ jOP�! j, and use Eq. (2) to compute

ffiffiffiffiffiffiffiffiffi
qðrÞp ¼ jWj; second,

we compute the angle H between the unit normal at O and OP
�!

,

i.e.,H ¼ argW. For the three Borromean rings, the resulting wavefunc-
tion WP at P is instantaneously given by the three contributions of
each individual wavefunction, i.e.,

WP ¼ W1P W2P W3P ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1q2q3

p
eiðH1þH2þH3Þ: (3)

A. Numerical setup

The time evolution of the Borromean rings (hereafter denoted by
B for short) is carried out by the numerical implementation of Eq. (1),
prescribing the initial geometry and topology of the quantum vortices.
This is done following the same methodology as in Ref. 1, i.e., by
employing the second-order Strang splitting approach, in which the
linear part (Laplace operator) is solved by the Fourier spectral method.

As described in Ref. 34, Eq. (1) is split into the so-called kinetic
and potential parts,

@u
@t

¼ i
2
r2u; (4a)

@v
@t

¼ i
2

1� jvj2
� �

v: (4b)

Equation (4a) is solved exactly in time after the physical solution
is transformed into the Fourier (spectral) space. On the other hand,
Eq. (4b) is solved exactly in the physical space as jvj is preserved by the
equation. By introducing esAunðxÞ and esBðvnðxÞÞvnðxÞ to denote the
two partial numerical solutions, the numerical approximation
Wnþ1ðxÞ ofWðx; tnþ1Þ at time tnþ1 ¼ ðnþ 1Þs is recovered by the so-
called Strang splitting,

Wnþ1=2ðxÞ ¼ esAe
s
2BðWnðxÞÞWnðxÞ; (5a)

Wnþ1ðxÞ ¼ e
s
2BðWnþ1=2ðxÞÞWnþ1=2ðxÞ: (5b)

FIG. 1. (a) Projection diagram of Borromean rings. (b) 3D representation of the Borromean rings formed by 3 ellipses, which is topologically equivalent to (a). (c) Symmetric
configuration: the Borromean rings, visualized by three planar elliptical thin tubes at qiso ¼ 0:05, are centerly placed orthogonally to each other in the xy-, yz-, and xz-planes
for h ¼ 0. (d) Zoomed-in view of the symmetric initial configuration. (e) Asymmetric configuration: one ellipse is tilted by an angle h > 0 from xz-plane about the x-axis.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 024126 (2025); doi: 10.1063/5.0252708 37, 024126-2

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/phf


The Strang splitting preserves the discrete finite mass in the com-
putational domain and is second-order accurate in time. Since the
time splitting Fourier methods restricted to a bounded physical
domain can be applied only in the presence of periodic boundary con-
ditions, initial conditions that are not periodic must be mirrored in the

directions lacking periodicity, with a consequent increase in the
degrees of freedom and computational effort.34

In our numerical simulations, the quantum vortices of
circulation 2p are placed in a original domain ½�45; 30� � ½�30; 45�
� ½�30; 45� discretized by a ½225� 225� 225� mesh, so that

FIG. 2. (Top) Zoomed-in snapshots of the main topological states produced during the evolution of quantum vortices under GPE, seen from the same viewing angle. (Bottom)
Pictorial representation of the topological states observed at various stages of the decaying path: 6-crossings Borromean rings (B), 5-crossings Whitehead link (W),
4-crossings connected sum of Hopf links (H#H), 3-crossings trefoil knot (T), 2-crossings Hopf link (H), and unknotted loop (U ).

FIG. 3. Summary of the topological cascade of the Borromean rings by varying values of h, from 0 to 16p=48. By varying h ¼ kp=48 for k 2 0; 1;…; 16f g, the initial configu-
ration of the Borromean rings evolves dynamically. Strands interact, reconnect, and form distinct topological types through various pathways. Inset: Colors denote different topo-
logical configurations realized during the evolution, as indicated by the different values of h. Vertical axis (left): The values of h as defined in the inset. For simplicity, only 4 of
the 17 prescribed values are indicated. Horizontal axis (bottom): Time units are shown for t 2 ½0; 190�, with critical time values marking typical topological transitions. Legend:
Each colored box represents a specific topology at a given time, characterized by a decreasing topological crossing number n (from the 6-crossing Borromean rings to the 0-
crossing unknotted loop) and an increasing number of unknots. Together, these configurations form a spectrum of topological states.
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Dx ¼ Dy ¼ Dz ¼ 1=3. The unit length is based on the healing length
n ¼ 1, which corresponds also to the vortex core size. This means that
there are three grid points within the vortex core. The initial condition
is generated in the original domain, and then it is mirrored in the three
spatial dimension to ensure the periodicity required by the Fourier
approach. The numerical simulation is then carried out in the mir-
rored numerical domain made of ½450� 450� 450� grid points, keep-
ing Dx ¼ Dy ¼ Dz ¼ 1=3. The time step employed in the Strang
splitting method is s ¼ 1=80. Further technical details regarding the
numerical method can be found in Ref. 34.

For the ideal symmetric case, the initial configuration is given by
three planar ellipses centered in mutually orthogonal planes, as shown
in Fig. 1(c). In terms of vortex core size units, the geometry of the three
ellipses is given by an aspect ratio of 30=20. The defects are sufficiently

separated from each other and from the boundaries of the computa-
tional domain, to avoid undesired effects. As shown in Fig. 1(d),
the orientation of the first and second ellipses is n1 ¼ ð0; 0; 1Þ
and n2 ¼ ð�1; 0; 0Þ, with the major axes aligned along the x-axis and
y-axis, respectively. The orientation of the third ellipse is n3
¼ ð0; cos h; sin hÞ with its major axis belonging to the xz-plane and
tilted by an angle h around the x-axis from the z-axis. With the
purpose of exploring the effects of geometric perturbations on the
decaying routes, we have chosen h ¼ kDh � 0 with Dh ¼ p

48 and
k ¼ 0; 1;…; 16, and, thus, 17 distinct initial conditions are explored,
as shown in Fig. 1(e) and in the illustration on the left vertical axis of
Fig. 3. We restrict our investigations to h � 16p=48 ¼ 60� because
above h ¼ 16p=48, the distance between vortices may drop below
the order of oð2nÞ, thus preventing a reliable detection of the

FIG. 4. Evolutionary routes generated by incrementally varying a single geometric parameter h across 17 experiments.
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reconnection events. The dynamics of quantum vortices is analyzed
in terms of geometry and topology by taking snapshots of the
W-evolution at every time interval Dt ¼ 1 (for convenience, noted as
“1s”), for the 17 values of h at t ¼ 0.

Due to the relative vorticity orientation, the defects tend to recon-
nect and drift collectively in the direction of n ¼ n1 þ n2 þ n3
¼ ð�1; cos h; 1þ sin hÞ toward the negative x-axis and along the pos-
itive direction of the y- and z-axis. During the time evolution, particu-
lar attention is paid to highly bent vortices because their high
curvature allows them to travel faster, enabling them to quickly reach
the boundaries of the computational domain, which may result in
unreliable dynamics. As the initial angle of inclination h increases, the
special separation between the vortices decreases and leads to earlier
reconnections, so that the type of evolution and the variety of decay
patterns are strongly influenced by the initial values of h.

In this paper, for simplicity, we denote the topologies observed in
the simulations without the indices that distinguish the positive and neg-
ative types (or, the left-handed and right-handed forms). The actual chir-
alities of these topologies are detailed in Appendix A, Fig. 8 in particular.

III. TOPOLOGICAL ANALYSIS OF DECAYING PATHS
DURING EVOLUTION

The process of topological evolution occurs in a stepwise manner
with several topological states acting as midway stages. Due to varia-
tions in initial conditions, vortex reconnections occurring at each stage
may differ significantly, leading to a diverse range of decaying paths.
This diversity gives rise to observable statistical patterns in the selection
of these paths, providing a deeper insight into the underlying mecha-
nisms governing topological transformations.

By analyzing the various decaying paths generated by the 6-
crossings Borromean rings B, we can identify 5 typical topological
states produced by the reconnections and visualized by their pictorial
representation as shown in Fig. 2. These states are classified according

to their topological crossing number and given by the 5-crossing
(negative) Whitehead link W , the 4-crossing connected sum of
Hopf links H#H (where the # symbol denotes the connected sum
operation, which combines two knots into a single composite knot),
the 3-crossing (left-hand) trefoil knot T, the 2-crossing (negative)
Hopf link H, and the unknotted loop U . This sequence represents a
family of key topological types produced during the various decaying
paths, but the path is neither unique nor reproduced in its entirety by
the different pathways.

To describe the specific decaying paths produced by the
Borromean rings for each initial configuration prescribed by one of the
17 inclination angles, we must analyze each topological cascade in
detail, and, thus, a much richer scenario is obtained, as summarized in
Fig. 3. Note that the family of topological states and the transitional
paths detected by the present simulations represent only a small subset
of all the possible topological states or paths admissible, in principle,
by the theoretical analysis based on the minimal diagram projections
of knot theory (see Sec. II A and Fig. 8 in Appendix A).

With reference to Fig. 3, since each snapshot corresponds to one
time unit, the horizontal extent of a colored region (i.e., a topological
type) provides direct information about its persistence before undergo-
ing reconnection, offering a measure of its topological lifetime.
Another direct information comes from the total area represented by
the colored regions, which is a measure directly related to the topologi-
cal persistence for various angles. From this, we can evidently conclude
that the Whitehead linkW represents a rather short-lived occurrence,
whereas the presence of trefoil knots with disjoint, unlinked single
loops (denoted by TtU) is a recurrent feature. It should be noted that
the aforementioned statistical results are limited to the initial condi-
tions considered in this study. In Ref. 36, for example, the evolution of
asymmetrical Borromean rings B under different initial conditions
resulted in a longer-livedWhitehead linkW .

For h ¼ 0, the Borromean rings collapse directly to form first a
trefoil knot and an unknot (represented by the disjoint union TtU),
then a collection of 3, 4, or more unknots (denoted, respectively, by U3

and U4þ), and even a reverse cascade of TtU , till the final production
of several unknots U4þ. A more elaborate cascade is produced by
h ¼ 9p=48, where we have

B ! W ! T ! H ! U ! U2 ! U3 ! U4þ ! UD; (6)

whereby UD denotes the alternative production of 2 or 3 disjoint
unknotted loops. For h ¼ 16p=48, we have an initial gradual decrease
in crossing numbers from 6 to 4, given by the sequence
B ! W ! H#H, before jumping to the production of Hopf links
and unknots. As discussed in Ref. 3, the topological collapse is due to
the instantaneous multiple reconnections at different sites on the vor-
tex strands, while the inverse cascade is due to the casual tying of the
vortex strands. The latter was observed in Ref. 3, where a trefoil knot
was generated by successive reconnections of two unlinked, perturbed
rings. As can be seen from the whole spectra of decaying paths shown
in Fig. 3, a general trend can be observed in the transition from red to
shades of gray, with few minor reversals. A predictive theory for these
specific transitions is almost impossible due to the complexity of the
nonlinearities involved. However, the overall trend remains clear: the
system evolves from a topologically complex state toward a collection
of unknots, with inverse transitions being relatively rare and not alter-
ing the dominant trajectory. Such a behavior is also observed in

FIG. 5. Type-I and Type-II regions as well as the gradually changing region, identi-
fied by the distinguished pattern of topological simplification.
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simulations of quantum turbulence and confirmed by the knot spec-
trum analysis carried out in Ref. 21. Insights regarding the irreversibil-
ity associated with these transitions can be found in Refs. 11 and 37.

A visual representation of the key routes of topological simplifica-
tion is shown in Fig. 4. Black arrows denote the possible pathways by a
single reconnection, while the colored lines identify the routes associ-
ated with the prescribed initial conditions given in the insets. Note that
the wiggled lines denoting topologically cyclic jumping3 take place
prevalently in the lower-right part of the diagrams. The direction of
knot evolution is primarily governed by two mechanisms: topological
simplification and generation of unknots.

From a topological dynamical viewpoint, in agreement with the
classification proposed in Ref. 3, the evolution process is roughly com-
posed of several regions, as shown in Fig. 5:

• Type-I of almost-monotonical degeneration (top-left, yellow):
Most configurations in this region are of relatively complex
topology, and the transitions are dominated by a marked preva-
lence of direct decays from a higher complexity state to a lower
complexity state.

• Type-II of wiggling cyclic evolutions (lower-right, blue): This
region is characterized by cyclic productions of a collection of
unknotted loops, with a minor possibility of forming Hopf links
or even trefoil knots.

• Region of gradual changing (in between I and II): As the topology
becomes progressively simpler, the generation of unknots begins
to challenge the dominance of topological simplification. In this
region, the evolution routes exhibit certain reversibility, although
reverse-processes remain significantly less frequent than forward-
ones. When the system’s primary topology gradually turns to the

trivial unknots, reverse processes, still a minority though, become
more and more non-negligible.

The border between the two dynamical regimes, monotonical
and wiggling, is also evident from the diagram of Fig. 3, where the
transition between the type-I and II regions is marked by the first bor-
der from the Hopf LinkH (blue) to the Unknots Un (gray).

IV. STATISTICS AND BIFURCATION GRAPHS FROM
TOPOLOGICAL TRANSITIONS

In order to provide estimates to quantify the prevalence or proba-
bility of the observed phenomena, we introduce a simple statistical
measure based on the collected data. In this regard, it is convenient to
restrict the analysis to the time range t 2 ½0; 90�, as shown in Fig. 9 of
Appendix B, where most of the interesting transitions occur. Data are,
thus, analyzed as per the 91 time units for the 17 angles prescribed rep-
resented by the 1547 boxes (snapshots). For this time range, we count
a total of 186 topological changes, on the top of which, we examine
two quantitative indices:

• Pathway selection probability, Pij ¼ PðKi ! KjÞ ¼ NpðKi ! KjÞ=P
j NpðKi ! KjÞ. The ratio P serves as the pathway selection

probability associated with each observed topological transition.
Here, NpðKi ! KjÞ is the number of topological changes happen-
ing on a studied pathway Ki ! Kj, from one topological state Ki

to Kj, including those within the topological cycles. Data of P are
presented in Fig. 6(a).

• Topological transition rate, Rij ¼ RðKi ! KjÞ ¼ NpðKi ! KjÞ=
NðKiÞR is introduced to evaluate the transition frequency along
each pathway. Here, NðKiÞ represents the number of snapshots

FIG. 6. (a) Probabilities P and (b) transition rates R associated with topological transitions. The black arrows denote the direct topological cascades, where the solid and
dashed lines refer to the single and multiple untying processes, respectively. The orange arrows denote the inverse topological cascades, where the solid and dashed lines refer
to the single and multiple tying processes, respectively.
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associated with a studied topology Ki for all specific h (given by
the number of time units along the time axis of Fig. 3). Data of R
are shown in Fig. 6(b). R provides an estimate for the topological
persistence of a given state, which further leads to another
measure, the average life s, for a given configuration K as
si ¼ ½Pj RijÞ��1. A computational example is TtU : its transi-
tions to the trefoil T, to HtU , and to U3 are relatively slow,
accounting for the most persistent events; hence, the average
life of TtU is computed as sðTtUÞ ¼ ð0:51%= sþ :53%= s
þ 0:51%=sÞ�1 ¼ 39:20 s.

A. Modified crossing number and dynamical
bifurcation graphs

Two geometric and topological measures of structural complexity
provide useful information for understanding subtle features of the
dynamical evolution of a vortex tangle. One is the writhing number of
a closed space curve C, defined by38

WrðCÞ ¼ 1
4p

þ
C

þ
C

X � Y

jjX � Y jj3 � dX � dYð Þ; (7)

where X and Y denote two distinct points on C. This is a global geo-
metric measure of the folding and twisting of a loop in space and is a
continuous function of the geometry, taking real values. The other is

the Gauss linking number of two closed space curves C1 and C2,
given by39

LkðC1; C2Þ ¼ 1
4p

þ
C1

þ
C2

X1 � X2

jjX1 � X2jj3
� dX1 � dX2ð Þ; (8)

where X1 2 C1 and X2 2 C2. The linking number gives information
on the linkage of C1 and C2 and is a topological invariant of the link,
taking only integer values. The centerlines Ci are extracted from the
w-field first by looking for points of minimum density and then by fit-
ting them so as to ensure a smooth line in the three-dimensional
space.2,3,35 A linear combination of Wr and Lk, extended to a number
i ¼ 1; 2;… of vortices present, provides a useful measure of structural
complexity of the tangle; this is the total writhe40

Wrtot ¼
X
i

WriðCiÞ þ
X
i 6¼j

Lki;jðCi; CjÞ: (9)

This quantity is computed for each time step to provide a dynamical
information of the tangle evolution.

To capture the topologically evolutionary direction of the system
and provide a finer description for the transitions between topological
states, we introduce a modified crossing number, v, to measure the sys-
tem’s structural complexity,

v ¼ nþ vs; (10)

where n is the usual minimal crossing number, playing the primary,
dominant role in quantifying the topological complexity, whereas vs is
a secondary term standing for a modification,

vs ¼ ��ðm� 1Þ; vs < 1; (11)

where m counts the number of knots, links, or unknots in the system
at a certain moment. The part ðm� 1Þ, indeed, refers to the compo-
nents surrounding the primary knot/link. For instance, in an HtU2

state, the total number of components ism ¼ 3, while those surround-
ing the primary link H are the other m� 1 ¼ 2 circles. � is an order-
controlling parameter, to ensure that vs remains subordinate to the
primary term n in order, namely, � ¼ oð1Þ. In this work, we adopt
� ¼ 0:2.

The essence of v is threefold.

• The ambient influence of dominant structures is considered,
emphasizing the significant contributions of each non-trivial
knot or link to the vortex ensemble.

• When m 6¼ 1, vs gives rise to a splitting of the dominant crossing
number n, so as to reveal a richer structure containing several
refined sub-levels beyond the primary level n (see the vertical axis
of Fig. 7). Typical examples include: T, which is split into T and
TtU ; H, which is split into H, HtU , and HtU2; and U , which
is split into U1, U2, U3, and U4þ, sequentially.

• Within the framework of v, one can see more topological transi-
tions taking place in between the new refined sub-states.

Figure 7 reports the time evolution of v against the total writhe
Wrtot for the 17 evolutions in the time range t 2 ½0; 90�. SinceWrtot is
a continuous function of the geometry, to facilitate a more direct inter-
pretation of the relationship between v andWrtot , we divide the range
ofWrtot into segments of width DWr ¼ 1

3. For each segment, the num-
ber of snapshots is counted and represented by the area of a square

FIG. 7. Bifurcation graph illustrating the topological dynamics of evolutionary
complexity (v) as a function of morphology (Wrtot ), with data spanning values of
h from 0 to 16p=48 and time t 2 ½0; 90�. The initial conditions are represented by
a white circle located at the top-middle of the graph. The size of each square indi-
cates the number of snapshot data points near a given writhe value for a specific
topology, with the area corresponding to the total number of time units (persis-
tence) achieved during the evolution. Horizontal lines represent writhe changes
that occur without altering the topology. Light blue lines denote a reduction in evo-
lutionary complexity (Dv < 0), and light orange lines an increase in complexity
(Dv > 0). Line thickness reflects the relative proportion of events evolving
from one state to another, and thicker lines representing a larger percentage
(up to 100%).
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placed at the midpoint of the segment. Since at time t ¼ 0, the set of
Borromean rings is given by three planar ellipses, i.e., the writhe of
every single component is zero, the total writhe value is zero, and,
thus, the Gauss linking number of the system is also zero, which is a
very special case of non-trivial linking.

The graph plotted in Fig. 7 represents a bifurcation diagram
of topological dynamics where a number of key features emerge
distinctly. First, it illustrates the dominant effects of a direct topo-
logical cascade of a complex tangle, providing quantitative informa-
tion of the relative topological persistence of single events. Second,
the marked emergence of trefoil knots, followed by a sea of
unknotted loops. Third, the increasing dispersion of writhe values
(more extreme convoluted structures form at the expense of topol-
ogy) as time passes, with the final production (bottom part of the
graph) of more and more loops attaining an averaged zero writhe,
in agreement with the observed final production of small vortex
rings.2,3

V. CONCLUSION

In this paper, we address the question of how a topologically
complex system of quantum vortices forming a set of Borromean rings
evolves under the Gross–Pitaevskii equation. Numerical simulations
have been carried out by employing the Strang time splitting Fourier
method. Among the possible ways of generating a set of initial condi-
tions that differ by a geometric parameter, we have chosen to vary the
tilting angle of one ring, thus obtaining 17 different evolutionary path-
ways. Each path has been analyzed in great detail in terms of topology
and structural complexity, observing 186 instances of topological
changes due to the reconnection events occurred during the time
evolution.

With this work, we have discovered and proven several interest-
ing results. Starting from a relatively complex tangle of vortices, we
confirm that the decay process is dominated by a direct topological
cascade driven by a continuous topological simplification of the tangle
toward the production of unlinked, unknotted loops. This result is in
good agreement with earlier studies3,23 of decaying quantum vortex
defects, a feature shared by classical turbulence as well. In agreement
with the observations of Ref. 21, inverse topological cascades do occur
as well, but they represent rare events that tend to happen in secondary
regimes of mixed topological cycles, when interactions between simple
unknotted loops are dominant (see Figs. 4 and 5). The chart of Fig. 3
and the diagrams of Fig. 6 provide quantitative measurements of the
observations. Figure 7, by reporting a modified crossing number v that
contains the usual n-part delivering the tangling and linking informa-
tion of a vortex system, and an extra vs-part that incorporates unlinked
vortex clusters in relation to cascade fragmentation, confirms that tre-
foil knots tend to be relatively persistent, and writhe values tend to get
dispersed over time, with the mean value distributing around zero in
the last evolutionary stages of the process. Since zero writhe is a signa-
ture of planarity, this confirms the overall trend toward the generation
of small-scale planar loops (rings). Such a comprehensive representa-
tion not only distinguishes a broader spectrum of topological states
beyond the typical archetypes but also provides a more convenient and
precise tool to capture the evolutionary scenario, thus making the
modified crossing number v possibly suitable for applications beyond
the current study.

The trend that leads structures to undergo free evolution through
topological simplification therefore becomes an established fact and
the main result of this paper. The implication of this generic behavior
in energy transfers is a question under investigation, which we hope to
be able to address in a subsequent paper.
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APPENDIX A: TOPOLOGICAL TRANSITION CHART

Figure 8 shows all the admissible topological transitions that the
Borromean rings may undergo from the mathematical point of view,
based on the analysis of the minimal diagram projections of knot the-
ory.39 According to the relative strand orientations, we can distin-
guish different knot types identified by the positive and negative
Whitehead links W6, the figure-of-eight knot F8, the right- and left-
handed trefoil knot TR=L, the positive and negative Hopf link H6,
and their various disjoint union of these topological types. The
dashed arrows denote the transitions admissible in theory but not
observed in the 17 experiments, whereas the thickened band arrows
denote the actual topological transitions observed in the simulations.

The focus of this paper is on the cascade process of quantum
vortex knots system. The underlying knot theory and statistical
mechanics origins will be discussed in detail in a separate paper.

APPENDIX B: TOPOLOGICAL CASCADE IN THE TIME
RANGE t 2 [0, 90]

Restricting the topological analysis to the time range t 2 ½0; 90�
(see Fig. 9), we can identify four different regions, separated by the
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dashed lines a, b, and c. These regions capture the topological persis-
tence of the key topological configurations observed throughout the
simulations. The narrow region between the a- and b-curve highlights
the brief transient production of 5- and 4-crossing structures and

marks the rapid passage to the formation of trefoil knots and Hopf
links. The green area is made of trefoil knots and single unknots with
equal “probability” distribution (marked by the c-curve), till the final
production of several unknots that populate the shades of gray area.

FIG. 9. Topological cascade of the Borromean rings by various values of h, from 0 to 16p=48, restricted to the time range t 2 ½0; 90�.

FIG. 8. Pictorial representation of the admissible topological transitions possible in theory. Thickened band arrows denote the actual topological cascades observed in the
simulation.
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APPENDIX C: PROBABILITY OF TOPOLOGICAL
TRANSITION

Computation of the probability Pij ¼ PðKi ! KjÞ associated
with a single topological transition Ki ! Kj is based on the num-
bers NpðKi ! KjÞ and

P
j NpðKi ! KjÞ of topological changes and

reconnections observed. For example, the total number of reconnec-
tions observed for the transitions of the Borromean rings B to pro-
duce HtH, W , and TtU is 17, only one of which determines the
production of HtH and one the production of TtU ; the remaining
15 lead to the formation of the Whitehead linkW . We have

PðB ! H#HÞ

¼ NpðB ! H#HÞ
NpðB ! H#HÞ þ NpðB ! WÞ þ NpðB ! TtUÞ

¼ 1
1þ 15þ 1

¼ 1
17

¼ 5:9%:; (C1)

where t stands for disjointed union and # the direct sum (Fig. 10).
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